Spaces:
Running
Running
import os | |
import datasets | |
# A dictionary to store various prompt templates. | |
template_dict = { | |
'default': 'Instruction: {instruction}\nInput: {input}\nAnswer: ' | |
} | |
# A dictionary to store the LoRA module mapping for different models. | |
lora_module_dict = { | |
'chatglm2': ['query_key_value'], | |
'falcon': ['query_key_value'], | |
'bloom': ['query_key_value'], | |
'internlm': ['q_proj', 'k_proj', 'v_proj'], | |
'llama2': ['q_proj', 'k_proj', 'v_proj'], | |
'llama2-13b': ['q_proj', 'k_proj', 'v_proj'], | |
'llama2-13b-nr': ['q_proj', 'k_proj', 'v_proj'], | |
'qwen': ["c_attn"], | |
'mpt': ['Wqkv'], | |
'baichuan': ['q_proj', 'k_proj', 'v_proj'], | |
} | |
def get_prompt(template, instruction, input_text): | |
""" | |
Generates a prompt based on a predefined template, instruction, and input. | |
Args: | |
template (str): The key to select the prompt template from the predefined dictionary. | |
instruction (str): The instruction text to be included in the prompt. | |
input_text (str): The input text to be included in the prompt. | |
Returns: | |
str: The generated prompt. | |
Raises: | |
KeyError: If the provided template key is not found in the template dictionary. | |
""" | |
if not instruction: | |
return input_text | |
if template not in template_dict: | |
raise KeyError(f"Template '{template}' not found. Available templates: {', '.join(template_dict.keys())}") | |
return template_dict[template].format(instruction=instruction, input=input_text) | |
def test_mapping(args, feature): | |
""" | |
Generate a mapping for testing purposes by constructing a prompt based on given instructions and input. | |
Args: | |
args (Namespace): A namespace object that holds various configurations, including the instruction template. | |
feature (dict): A dictionary containing 'instruction' and 'input' fields used to construct the prompt. | |
Returns: | |
dict: A dictionary containing the generated prompt. | |
Raises: | |
ValueError: If 'instruction' or 'input' are not provided in the feature dictionary. | |
""" | |
# Ensure 'instruction' and 'input' are present in the feature dictionary. | |
if 'instruction' not in feature or 'input' not in feature: | |
raise ValueError("Both 'instruction' and 'input' need to be provided in the feature dictionary.") | |
# Construct the prompt using the provided instruction and input. | |
prompt = get_prompt( | |
args.instruct_template, | |
feature['instruction'], | |
feature['input'] | |
) | |
return { | |
"prompt": prompt, | |
} | |
def tokenize(args, tokenizer, feature): | |
""" | |
Tokenizes the input prompt and target/output for model training or evaluation. | |
Args: | |
args (Namespace): A namespace object containing various settings and configurations. | |
tokenizer (Tokenizer): A tokenizer object used to convert text into tokens. | |
feature (dict): A dictionary containing 'input', 'instruction', and 'output' fields. | |
Returns: | |
dict: A dictionary containing tokenized 'input_ids', 'labels', and a flag 'exceed_max_length'. | |
""" | |
# Generate the prompt. | |
prompt = get_prompt( | |
args.instruct_template, | |
feature['instruction'], | |
feature['input'] | |
) | |
# Tokenize the prompt. | |
prompt_ids = tokenizer( | |
prompt, | |
padding=False, | |
max_length=args.max_length, | |
truncation=True | |
)['input_ids'] | |
# Tokenize the target/output. | |
target_ids = tokenizer( | |
feature['output'].strip(), | |
padding=False, | |
max_length=args.max_length, | |
truncation=True, | |
add_special_tokens=False | |
)['input_ids'] | |
# Combine tokenized prompt and target output. | |
input_ids = prompt_ids + target_ids | |
# Check if the combined length exceeds the maximum allowed length. | |
exceed_max_length = len(input_ids) >= args.max_length | |
# Add an end-of-sequence (EOS) token if it's not already present | |
# and if the sequence length is within the limit. | |
if input_ids[-1] != tokenizer.eos_token_id and not exceed_max_length: | |
input_ids.append(tokenizer.eos_token_id) | |
# Create label IDs for training. | |
# The labels should start from where the prompt ends, and be padded for the prompt portion. | |
label_ids = [tokenizer.pad_token_id] * len(prompt_ids) + input_ids[len(prompt_ids):] | |
return { | |
"input_ids": input_ids, | |
"labels": label_ids, | |
"exceed_max_length": exceed_max_length | |
} | |
def parse_model_name(name, from_remote=False): | |
""" | |
Parse the model name and return the appropriate path based on whether | |
the model is to be fetched from a remote source or from a local source. | |
Args: | |
- name (str): Name of the model. | |
- from_remote (bool): If True, return the remote path, else return the local path. | |
Returns: | |
- str: The appropriate path for the given model name. | |
""" | |
model_paths = { | |
'chatglm2': ('THUDM/chatglm2-6b', 'base_models/chatglm2-6b'), | |
'llama2': ('meta-llama/Llama-2-7b-hf', 'base_models/Llama-2-7b-hf'), | |
'llama2-13b': ('meta-llama/Llama-2-13b-hf', 'base_models/Llama-2-13b-hf'), | |
'llama2-13b-nr': ('NousResearch/Llama-2-13b-hf', 'base_models/Llama-2-13b-hf'), | |
'falcon': ('tiiuae/falcon-7b', 'base_models/falcon-7b'), | |
'internlm': ('internlm/internlm-7b', 'base_models/internlm-7b'), | |
'qwen': ('Qwen/Qwen-7B', 'base_models/Qwen-7B'), | |
'baichuan': ('baichuan-inc/Baichuan2-7B-Base', 'base_models/Baichuan2-7B-Base'), | |
'mpt': ('cekal/mpt-7b-peft-compatible', 'base_models/mpt-7b-peft-compatible'), | |
'bloom': ('bigscience/bloom-7b1', 'base_models/bloom-7b1') | |
} | |
if name in model_paths: | |
return model_paths[name][0] if from_remote else model_paths[name][1] | |
else: | |
valid_model_names = ', '.join(model_paths.keys()) | |
raise ValueError(f"Undefined base model '{name}'. Valid model names are: {valid_model_names}") | |
def load_dataset(names, from_remote=False): | |
""" | |
Load one or multiple datasets based on the provided names and source location. | |
Args: | |
names (str): A comma-separated list of dataset names. Each name can be followed by '*n' to indicate replication. | |
from_remote (bool): If True, load the dataset from Hugging Face's model hub. Otherwise, load it from a local disk. | |
Returns: | |
List[Dataset]: A list of loaded datasets. Each dataset is possibly replicated based on the input names. | |
""" | |
# Split the dataset names by commas for handling multiple datasets | |
dataset_names = names.split(',') | |
dataset_list = [] | |
for name in dataset_names: | |
# Initialize replication factor to 1 | |
replication_factor = 1 | |
dataset_name = name | |
# Check if the dataset name includes a replication factor | |
if '*' in name: | |
dataset_name, replication_factor = name.split('*') | |
replication_factor = int(replication_factor) | |
if replication_factor < 1: | |
raise ValueError("Replication factor must be a positive integer.") | |
# Construct the correct dataset path or name based on the source location | |
dataset_path_or_name = ('FinGPT/fingpt-' if from_remote else 'data/fingpt-') + dataset_name | |
if not os.path.exists(dataset_path_or_name) and not from_remote: | |
raise FileNotFoundError(f"The dataset path {dataset_path_or_name} does not exist.") | |
# Load the dataset | |
try: | |
tmp_dataset = datasets.load_dataset(dataset_path_or_name) if from_remote else datasets.load_from_disk( | |
dataset_path_or_name) | |
except Exception as e: | |
raise RuntimeError(f"Failed to load the dataset: {str(e)}") | |
# Check for 'test' split and create it from 'train' if necessary | |
if 'test' not in tmp_dataset: | |
if 'train' in tmp_dataset: | |
tmp_dataset = tmp_dataset['train'] | |
tmp_dataset = tmp_dataset.train_test_split(test_size=0.2, shuffle=True, seed=42) | |
else: | |
raise ValueError("The dataset must contain a 'train' or 'test' split.") | |
# Append the possibly replicated dataset to the list | |
dataset_list.extend([tmp_dataset] * replication_factor) | |
return dataset_list | |