Spaces:
Running
Running
import os | |
import csv | |
from datetime import datetime | |
from langchain_openai import ChatOpenAI | |
from langchain_core.prompts import PromptTemplate | |
from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate | |
import requests | |
from dotenv import load_dotenv | |
from fin_interpreter import analyze_article | |
from tavily import TavilyClient | |
# === Load environment or passed keys === | |
load_dotenv() | |
OPENAI_KEY = os.environ.get("OPENAI_API_KEY") or os.getenv("OPENAI_KEY") | |
TAVILY_KEY = os.environ.get("TAVILY_API_KEY") or os.getenv("TAVILY_KEY") | |
# === Initialize Tavily Client === | |
tavily_client = TavilyClient(api_key=TAVILY_KEY) | |
# === Get OpenAI client when needed === | |
def get_llm(): | |
openai_key = os.environ.get("OPENAI_API_KEY") | |
if not openai_key: | |
raise ValueError("OPENAI_API_KEY not found.") | |
return ChatOpenAI(model_name="gpt-4.1", openai_api_key=openai_key) | |
# === Related Terms === | |
def get_related_terms(topic): | |
llm = get_llm() | |
prompt = f"What are 5 closely related financial or industry terms to '{topic}'?" | |
response = llm.invoke(prompt) | |
return response.content.split(",") | |
def tavily_search(query, days, max_results=10): | |
api_key = os.getenv("TAVILY_KEY") | |
url = "https://api.tavily.com/search" | |
headers = {"Authorization": f"Bearer {api_key}"} | |
payload = { | |
"query": query, | |
"search_depth": "advanced", | |
"topic": "news", | |
"days": int(days), | |
"max_results": max_results, | |
"include_answer": False, | |
"include_raw_content": False | |
} | |
response = requests.post(url, json=payload, headers=headers) | |
return response.json() | |
# === Smart News Search === | |
def fetch_deep_news(topic, days): | |
all_results = [] | |
seen_urls = set() | |
base_queries = [ | |
topic, | |
f"{topic} AND startup", | |
f"{topic} AND acquisition OR merger OR funding", | |
f"{topic} AND CEO OR executive OR leadership", | |
f"{topic} AND venture capital OR Series A OR Series B", | |
f"{topic} AND government grant OR approval OR contract", | |
f"{topic} AND underrated OR small-cap OR micro-cap" | |
] | |
investor_queries = [ | |
f"{topic} AND BlackRock OR Vanguard OR SoftBank", | |
f"{topic} AND Elon Musk OR Sam Altman OR Peter Thiel", | |
f"{topic} AND Berkshire Hathaway OR Warren Buffett", | |
f"{topic} AND institutional investor OR hedge fund", | |
] | |
related_terms = get_related_terms(topic) | |
synonym_queries = [f"{term} AND {kw}" for term in related_terms for kw in ["startup", "funding", "merger", "acquisition"]] | |
all_queries = base_queries + investor_queries + synonym_queries | |
for query in all_queries: | |
try: | |
print(f"🔍 Tavily query: {query}") | |
response = requests.post( | |
url="https://api.tavily.com/search", | |
headers={ | |
"Authorization": f"Bearer {TAVILY_KEY}", | |
"Content-Type": "application/json" | |
}, | |
json={ | |
"query": query, | |
"search_depth": "advanced", | |
"topic": "news", | |
"days": int(days), | |
"max_results": 10, | |
"include_answer": False, | |
"include_raw_content": False | |
} | |
) | |
if response.status_code != 200: | |
print(f"⚠️ Tavily API error: {response.status_code} - {response.text}") | |
continue | |
for item in response.json().get("results", []): | |
url = item.get("url") | |
content = item.get("content", "") or item.get("summary", "") or item.get("title", "") | |
if url and url not in seen_urls and len(content) > 150: | |
all_results.append({ | |
"title": item.get("title"), | |
"url": url, | |
"content": content | |
}) | |
seen_urls.add(url) | |
except Exception as e: | |
print(f"⚠️ Tavily request failed for query '{query}': {e}") | |
print(f"📰 Total articles collected: {len(all_results)}") | |
return all_results | |
# === Generate Markdown Report === | |
def generate_value_investor_report(topic, news_results, max_articles=20, max_chars_per_article=400): | |
news_results = news_results[:max_articles] | |
for item in news_results: | |
result = analyze_article(item["content"]) | |
item["fin_sentiment"] = result.get("sentiment", "neutral") | |
item["fin_confidence"] = result.get("confidence", 0.0) | |
item["investment_decision"] = result.get("investment_decision", "Watch") | |
article_summary = "".join( | |
f"- **{item['title']}**: {item['content'][:max_chars_per_article]}... " | |
f"(Sentiment: {item['fin_sentiment'].title()}, Confidence: {item['fin_confidence']:.2f}, " | |
f"Decision: {item['investment_decision']}) [link]({item['url']})\n" | |
for item in news_results | |
) | |
prompt = PromptTemplate.from_template(""" | |
You're a highly focused value investor. Analyze this week's news on "{Topic}". | |
Your goal is to uncover: | |
- Meaningful events (e.g., CEO joining a startup, insider buys, big-name partnerships) | |
- Startups or small caps that may signal undervalued opportunity | |
- Connections to key individuals or institutions (e.g., Elon Musk investing, Sam Altman joining) | |
- Companies with strong fundamentals: low P/E, low P/B, high ROE, recent IPOs, moats, or high free cash flow | |
### News | |
{ArticleSummaries} | |
Write a markdown memo with: | |
1. **Key Value Signals** | |
2. **Stocks or Startups to Watch** | |
3. **What Smart Money Might Be Acting On** | |
4. **References** | |
5. **Investment Hypothesis** | |
Include context and macroeconomic/regulatory angles. Add an intro on sentiment and market trends for the week. | |
""") | |
chat_prompt = ChatPromptTemplate.from_messages([ | |
SystemMessagePromptTemplate(prompt=prompt) | |
]) | |
prompt_value = chat_prompt.format_prompt( | |
Topic=topic, | |
ArticleSummaries=article_summary | |
).to_messages() | |
llm = get_llm() | |
result = llm.invoke(prompt_value) | |
return result.content | |