Sigrid De los Santos
Add Streamlit app files
342fd5f
raw
history blame
5.32 kB
import os
import sys
import tempfile
import streamlit as st
import pandas as pd
from io import StringIO
import contextlib
# Add 'src' to Python path so we can import main.py
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
from main import run_pipeline
st.set_page_config(page_title="πŸ“° AI News Analyzer", layout="wide")
st.title("🧠 AI-Powered Investing News Analyzer")
# === API Key Input ===
st.subheader("πŸ” API Keys")
openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# === Topic Input ===
st.subheader("πŸ“ˆ Topics of Interest")
topics_data = []
with st.form("topics_form"):
topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
for i in range(topic_count):
col1, col2 = st.columns(2)
with col1:
topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
with col2:
days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
topics_data.append({"topic": topic, "timespan_days": days})
submitted = st.form_submit_button("Run Analysis")
# === Submission logic ===
if submitted:
if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
st.warning("Please fill in all fields.")
else:
os.environ["OPENAI_API_KEY"] = openai_api_key
os.environ["TAVILY_API_KEY"] = tavily_api_key
df = pd.DataFrame(topics_data)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
df.to_csv(tmp_csv.name, index=False)
csv_path = tmp_csv.name
# Live log capture
log_output = st.empty()
string_buffer = StringIO()
with contextlib.redirect_stdout(string_buffer), st.spinner("πŸ” Running analysis..."):
output_path = run_pipeline(csv_path, tavily_api_key)
logs = string_buffer.getvalue()
log_output.code(logs)
if output_path and isinstance(output_path, list):
st.success("βœ… Analysis complete!")
for path in output_path:
if os.path.exists(path):
with open(path, 'r', encoding='utf-8') as file:
html_content = file.read()
filename = os.path.basename(path)
st.download_button(
label=f"πŸ“₯ Download {filename}",
data=html_content,
file_name=filename,
mime="text/html"
)
st.components.v1.html(html_content, height=600, scrolling=True)
else:
st.error("❌ No reports were generated.")
# import os
# import sys
# import tempfile
# import streamlit as st
# import pandas as pd
# # Add 'src' to Python path so we can import main.py
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# from main import run_pipeline
# st.title("AI-Powered Investing News Analyzer")
# # === API Key Input ===
# st.subheader("πŸ” API Keys")
# openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
# tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# # === Topic Input ===
# st.subheader("πŸ“° Topics of Interest")
# topics_data = []
# with st.form("topics_form"):
# topic_count = st.number_input("How many topics do you want to analyze?", min_value=1, max_value=10, step=1, value=1)
# for i in range(topic_count):
# col1, col2 = st.columns(2)
# with col1:
# topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
# with col2:
# timespan = st.number_input(f"Timespan (days) for Topic {i+1}", min_value=1, max_value=30, value=7, key=f"days_{i}")
# topics_data.append({"topic": topic, "timespan_days": timespan})
# submitted = st.form_submit_button("Analyze Topics")
# # === Run pipeline on submit ===
# if submitted:
# if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
# st.warning("Please fill in all fields.")
# else:
# # Set environment variables so downstream modules can use them
# os.environ["OPENAI_API_KEY"] = openai_api_key
# os.environ["TAVILY_API_KEY"] = tavily_api_key
# # Save user topics to temp CSV
# df = pd.DataFrame(topics_data)
# with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
# df.to_csv(tmp_csv.name, index=False)
# csv_path = tmp_csv.name
# with st.spinner("Running analysis..."):
# output_path = run_pipeline(csv_path, tavily_api_key)
# if os.path.exists(output_path):
# st.success("βœ… Analysis complete!")
# with open(output_path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# st.download_button("πŸ“₯ Download HTML Report", html_content, file_name="news_report.html", mime="text/html")
# st.components.v1.html(html_content, height=600, scrolling=True)
# else:
# st.error("❌ Something went wrong during the analysis.")