Spaces:
Running
Running
import os | |
import sys | |
from datetime import datetime | |
from dotenv import load_dotenv | |
from image_search import search_unsplash_image | |
from md_html import convert_single_md_to_html as convert_md_to_html | |
from news_analysis import fetch_deep_news, generate_value_investor_report | |
import pandas as pd | |
from csv_utils import detect_changes | |
# Setup paths | |
BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # one level up from src/ | |
DATA_DIR = os.path.join(BASE_DIR, "data") | |
HTML_DIR = os.path.join(BASE_DIR, "html") | |
CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv") | |
os.makedirs(DATA_DIR, exist_ok=True) | |
os.makedirs(HTML_DIR, exist_ok=True) | |
# Load .env | |
load_dotenv() | |
def build_metrics_box(topic, num_articles): | |
now = datetime.now().strftime("%Y-%m-%d %H:%M") | |
return f""" | |
> Topic: `{topic}` | |
> Articles Collected: `{num_articles}` | |
> Generated: `{now}` | |
> | |
""" | |
def run_value_investing_analysis(csv_path): | |
current_df = pd.read_csv(csv_path) | |
prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv") | |
if os.path.exists(prev_path): | |
previous_df = pd.read_csv(prev_path) | |
changed_df = detect_changes(current_df, previous_df) | |
if changed_df.empty: | |
print("β No changes detected. Skipping processing.") | |
return [] | |
else: | |
changed_df = current_df | |
new_md_files = [] | |
for _, row in changed_df.iterrows(): | |
topic = row.get("topic") | |
timespan = row.get("timespan_days", 7) | |
print(f"\nπ Processing: {topic} ({timespan} days)") | |
news = fetch_deep_news(topic, timespan) | |
if not news: | |
print(f"β οΈ No news found for: {topic}") | |
continue | |
report_body = generate_value_investor_report(topic, news) | |
from image_search import search_unsplash_image | |
# Later inside your loop | |
image_url, image_credit = search_unsplash_image(topic, os.getenv("OPENAI_API_KEY")) | |
metrics_md = build_metrics_box(topic, len(news)) | |
full_md = metrics_md + report_body | |
base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}" | |
filename = base_filename + ".md" | |
filepath = os.path.join(DATA_DIR, filename) | |
counter = 1 | |
while os.path.exists(filepath): | |
filename = f"{base_filename}_{counter}.md" | |
filepath = os.path.join(DATA_DIR, filename) | |
counter += 1 | |
with open(filepath, "w", encoding="utf-8") as f: | |
f.write(full_md) | |
new_md_files.append(filepath) | |
print(f"β Markdown saved to: {DATA_DIR}") | |
current_df.to_csv(prev_path, index=False) | |
return new_md_files | |
def run_pipeline(csv_path, tavily_api_key): | |
os.environ["TAVILY_API_KEY"] = tavily_api_key | |
new_md_files = run_value_investing_analysis(csv_path) | |
new_html_paths = [] | |
for md_path in new_md_files: | |
convert_md_to_html(md_path, HTML_DIR) | |
html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html")) | |
new_html_paths.append(html_path) | |
return new_html_paths | |
if __name__ == "__main__": | |
md_files = run_value_investing_analysis(CSV_PATH) | |
for md in md_files: | |
convert_md_to_html(md, HTML_DIR) | |
print(f"π All reports converted to HTML at: {HTML_DIR}") | |
# import os | |
# import sys | |
# from datetime import datetime | |
# from dotenv import load_dotenv | |
# #rom news_analysis import load_csv, fetch_deep_news, generate_value_investor_report | |
# from image_search import search_unsplash_image | |
# from md_html import convert_md_folder_to_html | |
# from md_html import convert_single_md_to_html as convert_md_to_html | |
# from news_analysis import fetch_deep_news, generate_value_investor_report | |
# import pandas as pd | |
# from csv_utils import detect_changes | |
# # Adds the absolute path of /external to your module path | |
# BASE_DIR = os.path.dirname(os.path.abspath(__file__)) | |
# EXTERNAL_PATH = os.path.join(BASE_DIR, "external") | |
# if EXTERNAL_PATH not in sys.path: | |
# sys.path.append(EXTERNAL_PATH) | |
# # Load .env | |
# load_dotenv() | |
# # === Base Folder Setup === | |
# BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # one level up from src/ | |
# DATA_DIR = os.path.join(BASE_DIR, "data") | |
# HTML_DIR = os.path.join(BASE_DIR, "html") | |
# CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv") | |
# # Ensure output folders exist | |
# os.makedirs(DATA_DIR, exist_ok=True) | |
# os.makedirs(HTML_DIR, exist_ok=True) | |
# # === Metrics Block === | |
# def build_metrics_box(topic, num_articles): | |
# now = datetime.now().strftime("%Y-%m-%d %H:%M") | |
# return f""" | |
# > Topic: `{topic}` | |
# > Articles Collected: `{num_articles}` | |
# > Generated: `{now}` | |
# > | |
# """ | |
# # === Main Logic === | |
# def run_value_investing_analysis(csv_path): | |
# current_df = pd.read_csv(csv_path) | |
# prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv") | |
# if os.path.exists(prev_path): | |
# previous_df = pd.read_csv(prev_path) | |
# changed_df = detect_changes(current_df, previous_df) | |
# if changed_df.empty: | |
# print("β No changes detected. Skipping processing.") | |
# return | |
# else: | |
# changed_df = current_df | |
# for _, row in changed_df.iterrows(): | |
# topic = row.get("topic") | |
# timespan = row.get("timespan_days", 7) | |
# print(f"\nπ Processing: {topic} ({timespan} days)") | |
# news = fetch_deep_news(topic, timespan) | |
# if not news: | |
# print(f"β οΈ No news found for: {topic}") | |
# continue | |
# report_body = generate_value_investor_report(topic, news) | |
# image_url, image_credit = search_unsplash_image(topic) | |
# metrics_md = build_metrics_box(topic, len(news)) | |
# full_md = metrics_md + report_body | |
# base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}" | |
# filename = base_filename + ".md" | |
# filepath = os.path.join(DATA_DIR, filename) | |
# counter = 1 | |
# while os.path.exists(filepath): | |
# filename = f"{base_filename}_{counter}.md" | |
# filepath = os.path.join(DATA_DIR, filename) | |
# counter += 1 | |
# with open(filepath, "w", encoding="utf-8") as f: | |
# f.write(full_md) | |
# print(f"β Markdown saved to: {DATA_DIR}") | |
# current_df.to_csv(prev_path, index=False) # Save current as previous for next run | |
# #convert_md_folder_to_html(DATA_DIR, HTML_DIR) | |
# #print(f"π All reports converted to HTML at: {HTML_DIR}") | |
# # === Streamlit Integration Wrapper === | |
# def run_pipeline(csv_path, tavily_api_key): | |
# """ | |
# Runs the full analysis pipeline for Streamlit. | |
# Returns: | |
# str: Path to the generated HTML report. | |
# """ | |
# os.environ["TAVILY_API_KEY"] = tavily_api_key | |
# run_value_investing_analysis(csv_path) | |
# # Combine all generated markdown into one file | |
# combined_md_path = os.path.join(DATA_DIR, "combined_report.md") | |
# with open(combined_md_path, "w", encoding="utf-8") as outfile: | |
# for fname in os.listdir(DATA_DIR): | |
# if fname.endswith(".md"): | |
# with open(os.path.join(DATA_DIR, fname), "r", encoding="utf-8") as f: | |
# outfile.write(f.read() + "\n\n---\n\n") | |
# # Convert to HTML | |
# # html_output_path = os.path.join(HTML_DIR, "news_report.html") | |
# # convert_md_to_html(combined_md_path, html_output_path) | |
# convert_md_to_html(combined_md_path, HTML_DIR) | |
# html_output_path = os.path.join(HTML_DIR, "combined_report.html") | |
# return html_output_path | |
# # === Run === | |
# if __name__ == "__main__": | |
# run_value_investing_analysis(CSV_PATH) | |
# convert_md_folder_to_html(DATA_DIR, HTML_DIR) | |
# print(f"π All reports converted to HTML at: {HTML_DIR}") | |