Spaces:
Running
Running
import os | |
import sys | |
import time | |
import itertools | |
import streamlit as st | |
import pandas as pd | |
from io import StringIO | |
# Add 'src' to Python path so we can import main.py | |
sys.path.append(os.path.join(os.path.dirname(__file__), 'src')) | |
from main import run_pipeline # We will update this to return report, articles_df, insights_df | |
# --- Page Config --- | |
st.set_page_config(page_title="π° AI News Analyzer", layout="wide") | |
st.title("π§ AI-Powered Investing News Analyzer") | |
# --- API Key Inputs --- | |
st.subheader("π API Keys") | |
openai_api_key = st.text_input("OpenAI API Key", type="password").strip() | |
tavily_api_key = st.text_input("Tavily API Key", type="password").strip() | |
# --- Topics --- | |
st.subheader("π Topics of Interest") | |
topics_data = [] | |
with st.form("topics_form"): | |
topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1) | |
for i in range(topic_count): | |
col1, col2 = st.columns(2) | |
with col1: | |
topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}") | |
with col2: | |
timespan = st.number_input(f"Timespan (days) for Topic {i+1}", min_value=1, max_value=30, value=7, step=1, key=f"timespan_{i}") | |
topics_data.append((topic, timespan)) | |
run_button = st.form_submit_button("π Run Analysis") | |
# --- Placeholder for logs --- | |
log_placeholder = st.empty() | |
# --- Results Tabs --- | |
tabs = st.tabs(["π Report", "π Articles", "π Insights"]) | |
if run_button: | |
if not openai_api_key or not tavily_api_key: | |
st.error("Please provide both OpenAI and Tavily API keys.") | |
else: | |
run_button = False # Disable button | |
log_placeholder.info("π Starting analysis...") | |
# Rotating status messages | |
status_placeholder = st.empty() | |
steps = ["Running Tavily search...", "Analyzing with FinBERT & FinGPT...", "Generating LLM summary..."] | |
cycle = itertools.cycle(steps) | |
# Display rotating messages while running pipeline | |
with st.spinner("Working..."): | |
for _ in range(3): | |
status_placeholder.text(next(cycle)) | |
time.sleep(0.8) | |
# Run the pipeline | |
try: | |
report_md, articles_df, insights_df = run_pipeline( | |
topics=topics_data, | |
openai_api_key=openai_api_key, | |
tavily_api_key=tavily_api_key | |
) | |
log_placeholder.success("β Analysis completed.") | |
except Exception as e: | |
log_placeholder.error(f"β Error: {e}") | |
st.stop() | |
# --- Report Tab --- | |
with tabs[0]: | |
st.subheader("π AI-Generated Report") | |
st.markdown(report_md, unsafe_allow_html=True) | |
# --- Articles Tab --- | |
with tabs[1]: | |
st.subheader("π Articles & Priorities") | |
if not articles_df.empty: | |
# Color code priority | |
articles_df['Priority'] = articles_df['Priority'].map( | |
lambda x: "π΄ High" if str(x).lower() == "haute" or str(x).lower() == "high" else "π’ Low" | |
) | |
st.dataframe(articles_df, use_container_width=True) | |
# CSV download | |
csv = articles_df.to_csv(index=False) | |
st.download_button("β¬οΈ Download Articles CSV", data=csv, file_name="articles.csv", mime="text/csv") | |
else: | |
st.warning("No articles found.") | |
# --- Insights Tab --- | |
with tabs[2]: | |
st.subheader("π Company Insights (FinGPT + FinBERT)") | |
if insights_df is not None and not insights_df.empty: | |
st.dataframe(insights_df, use_container_width=True) | |
csv = insights_df.to_csv(index=False) | |
st.download_button("β¬οΈ Download Insights CSV", data=csv, file_name="insights.csv", mime="text/csv") | |
else: | |
st.info("No company insights generated yet.") | |
# import os | |
# import sys | |
# import tempfile | |
# import time | |
# import itertools | |
# import streamlit as st | |
# import pandas as pd | |
# from threading import Thread | |
# from io import StringIO | |
# # Add 'src' to Python path so we can import main.py | |
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src')) | |
# from main import run_pipeline | |
# st.set_page_config(page_title="π° AI News Analyzer", layout="wide") | |
# st.title("π§ AI-Powered Investing News Analyzer") | |
# # === API Key Input === | |
# st.subheader("π API Keys") | |
# openai_api_key = st.text_input("OpenAI API Key", type="password").strip() | |
# tavily_api_key = st.text_input("Tavily API Key", type="password").strip() | |
# # === Topic Input === | |
# st.subheader("π Topics of Interest") | |
# topics_data = [] | |
# with st.form("topics_form"): | |
# topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1) | |
# for i in range(topic_count): | |
# col1, col2 = st.columns(2) | |
# with col1: | |
# topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}") | |
# with col2: | |
# days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}") | |
# topics_data.append({"topic": topic, "timespan_days": days}) | |
# submitted = st.form_submit_button("Run Analysis") | |
# # === Submission logic === | |
# if submitted: | |
# if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]): | |
# st.warning("Please fill in all fields.") | |
# else: | |
# os.environ["OPENAI_API_KEY"] = openai_api_key | |
# os.environ["TAVILY_API_KEY"] = tavily_api_key | |
# df = pd.DataFrame(topics_data) | |
# with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv: | |
# df.to_csv(tmp_csv.name, index=False) | |
# csv_path = tmp_csv.name | |
# # === UI Elements === | |
# spinner_box = st.empty() # For rotating messages | |
# log_box = st.empty() # For logs | |
# logs = [] | |
# rotating = True | |
# def log(msg): | |
# logs.append(msg) | |
# log_box.code("\n".join(logs)) | |
# # === Rotating UI Messages === | |
# def rotating_messages(): | |
# messages = itertools.cycle([ | |
# "π Searching financial news...", | |
# "π§ Running language models...", | |
# "π Analyzing investor sentiment...", | |
# "π Summarizing key takeaways...", | |
# "πΉ Building markdown reports..." | |
# ]) | |
# while rotating: | |
# spinner_box.markdown(f"β³ {next(messages)}") | |
# time.sleep(1.5) | |
# rotator_thread = Thread(target=rotating_messages) | |
# rotator_thread.start() | |
# try: | |
# # Check API Keys | |
# import openai | |
# openai.OpenAI(api_key=openai_api_key).models.list() | |
# log("β OpenAI API key is valid.") | |
# import requests | |
# tavily_test = requests.post( | |
# "https://api.tavily.com/search", | |
# headers={"Authorization": f"Bearer {tavily_api_key}"}, | |
# json={"query": "test", "days": 1, "max_results": 1} | |
# ) | |
# if tavily_test.status_code == 200: | |
# log("β Tavily API key is valid.") | |
# else: | |
# raise ValueError(f"Tavily error: {tavily_test.status_code} - {tavily_test.text}") | |
# # Run the full pipeline | |
# log("π Running analysis pipeline...") | |
# output_path = run_pipeline(csv_path, tavily_api_key, progress_callback=log) | |
# rotating = False | |
# rotator_thread.join() | |
# spinner_box.success("β Analysis complete!") | |
# if output_path and isinstance(output_path, list): | |
# for path in output_path: | |
# if os.path.exists(path): | |
# with open(path, 'r', encoding='utf-8') as file: | |
# html_content = file.read() | |
# filename = os.path.basename(path) | |
# st.download_button( | |
# label=f"π₯ Download {filename}", | |
# data=html_content, | |
# file_name=filename, | |
# mime="text/html" | |
# ) | |
# st.components.v1.html(html_content, height=600, scrolling=True) | |
# else: | |
# st.error("β No reports were generated.") | |
# except Exception as e: | |
# rotating = False | |
# rotator_thread.join() | |
# spinner_box.error("β Failed.") | |
# log_box.error(f"β Error: {e}") | |