File size: 12,690 Bytes
97063b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df4cc0
 
 
 
 
 
 
 
 
 
97063b2
9df4cc0
 
97063b2
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97063b2
9df4cc0
97063b2
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97063b2
 
 
 
9df4cc0
 
97063b2
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373f148
9df4cc0
373f148
9df4cc0
 
 
 
 
 
 
 
 
 
373f148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# import os
# import csv
# from datetime import datetime
# from langchain_openai import ChatOpenAI
# from langchain_core.prompts import PromptTemplate
# from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate
# import requests
# from dotenv import load_dotenv
# from fin_interpreter import analyze_article
# from tavily import TavilyClient

# # === Load environment or passed keys ===
# load_dotenv()
# OPENAI_KEY = os.environ.get("OPENAI_API_KEY") or os.getenv("OPENAI_KEY")
# TAVILY_KEY = os.environ.get("TAVILY_API_KEY") or os.getenv("TAVILY_KEY")

# # === Initialize Tavily Client ===
# tavily_client = TavilyClient(api_key=TAVILY_KEY)

# # === Get OpenAI client when needed ===
# def get_llm():
#     openai_key = os.environ.get("OPENAI_API_KEY")
#     if not openai_key:
#         raise ValueError("OPENAI_API_KEY not found.")
#     return ChatOpenAI(model_name="gpt-4.1", openai_api_key=openai_key)

# # === Related Terms ===
# def get_related_terms(topic):
#     llm = get_llm()
#     prompt = f"What are 5 closely related financial or industry terms to '{topic}'?"
#     response = llm.invoke(prompt)
#     return response.content.split(",")

# def tavily_search(query, days, max_results=10):
#     api_key = os.getenv("TAVILY_KEY")
#     url = "https://api.tavily.com/search"
#     headers = {"Authorization": f"Bearer {api_key}"}
#     payload = {
#         "query": query,
#         "search_depth": "advanced",
#         "topic": "news",
#         "days": int(days),
#         "max_results": max_results,
#         "include_answer": False,
#         "include_raw_content": False
#     }
#     response = requests.post(url, json=payload, headers=headers)
#     return response.json()

# # === Smart News Search ===
# def fetch_deep_news(topic, days):
#     all_results = []
#     seen_urls = set()

#     base_queries = [
#         topic,
#         f"{topic} AND startup",
#         f"{topic} AND acquisition OR merger OR funding",
#         f"{topic} AND CEO OR executive OR leadership",
#         f"{topic} AND venture capital OR Series A OR Series B",
#         f"{topic} AND government grant OR approval OR contract",
#         f"{topic} AND underrated OR small-cap OR micro-cap"
#     ]

#     investor_queries = [
#         f"{topic} AND BlackRock OR Vanguard OR SoftBank",
#         f"{topic} AND Elon Musk OR Sam Altman OR Peter Thiel",
#         f"{topic} AND Berkshire Hathaway OR Warren Buffett",
#         f"{topic} AND institutional investor OR hedge fund",
#     ]

#     related_terms = get_related_terms(topic)
#     synonym_queries = [f"{term} AND {kw}" for term in related_terms for kw in ["startup", "funding", "merger", "acquisition"]]

#     all_queries = base_queries + investor_queries + synonym_queries

#     for query in all_queries:
#         try:
#             print(f"๐Ÿ” Tavily query: {query}")
#             response = requests.post(
#                 url="https://api.tavily.com/search",
#                 headers={
#                     "Authorization": f"Bearer {TAVILY_KEY}",
#                     "Content-Type": "application/json"
#                 },
#                 json={
#                     "query": query,
#                     "search_depth": "advanced",
#                     "topic": "news",
#                     "days": int(days),
#                     "max_results": 10,
#                     "include_answer": False,
#                     "include_raw_content": False
#                 }
#             )

#             if response.status_code != 200:
#                 print(f"โš ๏ธ Tavily API error: {response.status_code} - {response.text}")
#                 continue

#             for item in response.json().get("results", []):
#                 url = item.get("url")
#                 content = item.get("content", "") or item.get("summary", "") or item.get("title", "")
#                 if url and url not in seen_urls and len(content) > 150:
#                     all_results.append({
#                         "title": item.get("title"),
#                         "url": url,
#                         "content": content
#                     })
#                     seen_urls.add(url)

#         except Exception as e:
#             print(f"โš ๏ธ Tavily request failed for query '{query}': {e}")

#     print(f"๐Ÿ“ฐ Total articles collected: {len(all_results)}")
#     return all_results

# # === Generate Markdown Report ===
# def generate_value_investor_report(topic, news_results, max_articles=20, max_chars_per_article=400):
#     news_results = news_results[:max_articles]

#     for item in news_results:
#         result = analyze_article(item["content"])
#         item["fin_sentiment"] = result.get("sentiment", "neutral")
#         item["fin_confidence"] = result.get("confidence", 0.0)
#         item["investment_decision"] = result.get("investment_decision", "Watch")

#     article_summary = "".join(
#         f"- **{item['title']}**: {item['content'][:max_chars_per_article]}... "
#         f"(Sentiment: {item['fin_sentiment'].title()}, Confidence: {item['fin_confidence']:.2f}, "
#         f"Decision: {item['investment_decision']}) [link]({item['url']})\n"
#         for item in news_results
#     )

#     prompt = PromptTemplate.from_template("""
# You're a highly focused value investor. Analyze this week's news on "{Topic}".

# Your goal is to uncover:
# - Meaningful events (e.g., CEO joining a startup, insider buys, big-name partnerships)
# - Startups or small caps that may signal undervalued opportunity
# - Connections to key individuals or institutions (e.g., Elon Musk investing, Sam Altman joining)
# - Companies with strong fundamentals: low P/E, low P/B, high ROE, recent IPOs, moats, or high free cash flow

# ### News
# {ArticleSummaries}

# Write a markdown memo with:
# 1. **Key Value Signals**
# 2. **Stocks or Startups to Watch**
# 3. **What Smart Money Might Be Acting On**
# 4. **References**
# 5. **Investment Hypothesis**

# Include context and macroeconomic/regulatory angles. Add an intro on sentiment and market trends for the week.
# """)

#     chat_prompt = ChatPromptTemplate.from_messages([
#         SystemMessagePromptTemplate(prompt=prompt)
#     ])
#     prompt_value = chat_prompt.format_prompt(
#         Topic=topic,
#         ArticleSummaries=article_summary
#     ).to_messages()

#     llm = get_llm()
#     result = llm.invoke(prompt_value)
#     return result.content

import os
import csv
from datetime import datetime
from langchain_openai import ChatOpenAI
from langchain_core.prompts import PromptTemplate
from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate
import requests
from dotenv import load_dotenv
from fin_interpreter import analyze_article

# === Load environment ===
load_dotenv()
OPENAI_KEY = os.environ.get("OPENAI_API_KEY") or os.getenv("OPENAI_KEY")
TAVILY_KEY = None  # Will be accessed dynamically at runtime

# === Get OpenAI client when needed ===
def get_llm():
    openai_key = os.environ.get("OPENAI_API_KEY")
    if not openai_key:
        raise ValueError("OPENAI_API_KEY not found.")
    return ChatOpenAI(model_name="gpt-4.1", openai_api_key=openai_key)

# === Related Terms ===
def get_related_terms(topic):
    llm = get_llm()
    prompt = f"What are 5 closely related financial or industry terms to '{topic}'?"
    response = llm.invoke(prompt)
    return response.content.split(",")

# === Tavily Search ===
def tavily_search(query, days, max_results=10):
    api_key = os.environ.get("TAVILY_API_KEY") or TAVILY_KEY
    url = "https://api.tavily.com/search"
    headers = {"Authorization": f"Bearer {api_key}"}
    payload = {
        "query": query,
        "search_depth": "advanced",
        "topic": "news",
        "days": int(days),
        "max_results": max_results,
        "include_answer": False,
        "include_raw_content": False
    }
    response = requests.post(url, json=payload, headers=headers)
    return response.json()

# === Smart News Search ===
def fetch_deep_news(topic, days):
    all_results = []
    seen_urls = set()

    base_queries = [
        topic,
        f"{topic} AND startup",
        f"{topic} AND acquisition OR merger OR funding",
        f"{topic} AND CEO OR executive OR leadership",
        f"{topic} AND venture capital OR Series A OR Series B",
        f"{topic} AND government grant OR approval OR contract",
        f"{topic} AND underrated OR small-cap OR micro-cap"
    ]

    investor_queries = [
        f"{topic} AND BlackRock OR Vanguard OR SoftBank",
        f"{topic} AND Elon Musk OR Sam Altman OR Peter Thiel",
        f"{topic} AND Berkshire Hathaway OR Warren Buffett",
        f"{topic} AND institutional investor OR hedge fund",
    ]

    related_terms = get_related_terms(topic)
    synonym_queries = [f"{term} AND {kw}" for term in related_terms for kw in ["startup", "funding", "merger", "acquisition"]]

    all_queries = base_queries + investor_queries + synonym_queries

    for query in all_queries:
        try:
            print(f"๐Ÿ” Tavily query: {query}")
            response = tavily_search(query, days)

            if not isinstance(response, dict) or "results" not in response:
                print(f"โš ๏ธ Tavily API response issue: {response}")
                continue

            for item in response.get("results", []):
                url = item.get("url")
                content = item.get("content", "") or item.get("summary", "") or item.get("title", "")
                if url and url not in seen_urls and len(content) > 150:
                    all_results.append({
                        "title": item.get("title"),
                        "url": url,
                        "content": content
                    })
                    seen_urls.add(url)

        except Exception as e:
            print(f"โš ๏ธ Tavily request failed for query '{query}': {e}")

    print(f"๐Ÿ“ฐ Total articles collected: {len(all_results)}")
    return all_results

# === Generate Markdown Report ===
def generate_value_investor_report(topic, news_results, max_articles=20, max_chars_per_article=400):
    news_results = news_results[:max_articles]

    for item in news_results:
        result = analyze_article(item["content"])
        item["fin_sentiment"] = result.get("sentiment", "neutral")
        item["fin_confidence"] = result.get("confidence", 0.0)
        item["investment_decision"] = result.get("investment_decision", "Watch")

    article_summary = "".join(
        f"- **{item['title']}**: {item['content'][:max_chars_per_article]}... "
        f"(Sentiment: {item['fin_sentiment'].title()}, Confidence: {item['fin_confidence']:.2f}, "
        f"Decision: {item['investment_decision']}) [link]({item['url']})\n"
        for item in news_results
    )

    prompt = PromptTemplate.from_template("""
You're a highly focused value investor. Analyze this week's news on "{Topic}".

Your goal is to uncover:
- Meaningful events (e.g., CEO joining a startup, insider buys, big-name partnerships)
- Startups or small caps that may signal undervalued opportunity
- Connections to key individuals or institutions (e.g., Elon Musk investing, Sam Altman joining)
- Companies with strong fundamentals: low P/E, low P/B, high ROE, recent IPOs, moats, or high free cash flow - THEY MUST INCLUDE THE LINK AS WELL and this is very important

                                          
### News
{ArticleSummaries}

Write a markdown memo with:
1. **Key Value Signals**
2. **Stocks or Startups to Watch**
3. **What Smart Money Might Be Acting On**
4. **References**
5. **Investment Hypothesis**

                                          ### ๐Ÿ“Œ Executive Summary

Summarize the topic's current investment environment in 3โ€“4 bullet points. Include sentiment, risks, and catalysts.

---

### ๐Ÿ“Š Signals and Analysis (Include Sources)

For each important news item, write a short paragraph with:
- What happened
- Why it matters (financially)
- Embedded source as `[source title](url)`
- Bold any key financial terms (e.g., **Series A**, **merger**, **valuation**)

---

### ๐Ÿง  Investment Thesis

Give a reasoned conclusion:
- Is this a buy/sell/watch opportunity?
- Whatโ€™s the risk/reward?
- What signals or themes matter most?

Include context and macroeconomic/regulatory angles. Add an intro on sentiment and market trends for the week.
""")

    chat_prompt = ChatPromptTemplate.from_messages([
        SystemMessagePromptTemplate(prompt=prompt)
    ])
    prompt_value = chat_prompt.format_prompt(
        Topic=topic,
        ArticleSummaries=article_summary
    ).to_messages()

    llm = get_llm()
    result = llm.invoke(prompt_value)
    return result.content