File size: 5,088 Bytes
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
import os
import torch
import random
import numpy as np
from transformers import set_seed
import deepspeed
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus


def print_rank_0(msg, rank=0):
    if rank <= 0:
        print(msg)


def to_device(batch, device):
    output = {}
    for k, v in batch.items():
        try:
            output[k] = v.to(device)
        except:
            output[k] = v
    return output


class MovingAverage:

    def __init__(self):
        self.count = 0
        self.total = 0
        self.mean = 0

    def update(self, num):
        self.total += num
        self.count += 1
        self.mean = self.total / self.count

        return self.mean


def save_hf_format(model, tokenizer, args, sub_folder=""):
    # used to save huggingface format, so we can use it for hf.from_pretrained
    model_to_save = model.module if hasattr(model, 'module') else model
    CONFIG_NAME = "config.json"
    WEIGHTS_NAME = "pytorch_model.bin"
    output_dir = os.path.join(args.output_dir, sub_folder)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    output_model_file = os.path.join(output_dir, WEIGHTS_NAME)
    output_config_file = os.path.join(output_dir, CONFIG_NAME)
    save_dict = model_to_save.state_dict()
    for key in list(save_dict.keys()):
        if "lora" in key:
            del save_dict[key]
    torch.save(save_dict, output_model_file)
    model_to_save.config.to_json_file(output_config_file)
    tokenizer.save_vocabulary(output_dir)


def set_random_seed(seed):
    if seed is not None:
        set_seed(seed)
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)


def get_all_reduce_mean(tensor):
    torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.SUM)
    tensor = tensor / torch.distributed.get_world_size()
    return tensor


def get_optimizer_grouped_parameters(model,
                                     weight_decay,
                                     no_decay_name_list=[
                                         "bias", "LayerNorm.weight"
                                     ]):
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if (not any(nd in n
                            for nd in no_decay_name_list) and p.requires_grad)
            ],
            "weight_decay":
            weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if (any(nd in n
                        for nd in no_decay_name_list) and p.requires_grad)
            ],
            "weight_decay":
            0.0,
        },
    ]
    return optimizer_grouped_parameters


def _z3_params_to_fetch(param_list):
    return [
        p for p in param_list
        if hasattr(p, 'ds_id') and p.ds_status == ZeroParamStatus.NOT_AVAILABLE
    ]


def moving_average(model, model_ema, beta=0.992, device=None, zero_stage=0):
    zero_stage_3 = (zero_stage == 3)
    with torch.no_grad():
        for param, param_ema in zip(model.parameters(),
                                    model_ema.parameters()):
            # TODO: use prefiltering for efficiency
            params_to_fetch = _z3_params_to_fetch([param, param_ema
                                                   ]) if zero_stage_3 else []
            should_gather_param = len(params_to_fetch) > 0
            with deepspeed.zero.GatheredParameters(
                    params_to_fetch, enabled=should_gather_param):
                data = param.data
                if device is not None:
                    data = data.to(device)
                param_ema.data.copy_(torch.lerp(data, param_ema.data, beta))


def save_zero_three_model(model_ema, global_rank, save_dir, zero_stage=0):
    zero_stage_3 = (zero_stage == 3)
    os.makedirs(save_dir, exist_ok=True)
    WEIGHTS_NAME = "pytorch_model.bin"
    output_model_file = os.path.join(save_dir, WEIGHTS_NAME)

    model_to_save = model_ema.module if hasattr(model_ema,
                                                'module') else model_ema
    if not zero_stage_3:
        if global_rank == 0:
            torch.save(model_to_save.state_dict(), output_model_file)
    else:
        output_state_dict = {}
        for k, v in model_to_save.named_parameters():

            if hasattr(v, 'ds_id'):
                with deepspeed.zero.GatheredParameters(_z3_params_to_fetch([v
                                                                            ]),
                                                       enabled=zero_stage_3):
                    v_p = v.data.cpu()
            else:
                v_p = v.cpu()
            if global_rank == 0 and "lora" not in k:
                output_state_dict[k] = v_p
        if global_rank == 0:
            torch.save(output_state_dict, output_model_file)
        del output_state_dict