Spaces:
Running
Running
File size: 4,255 Bytes
9df4cc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os.path
import json
import http.client
import urllib.parse
import pandas as pd
import tushare as ts
import os
import openai
def get_news_from_tushare(api_key: str, data_path: str = 'finance_news_from_tushare.csv') -> str:
start_date = '2023-02-01'
end_date = '2023-02-02'
limit_line = 200
if_news_or_reports = False
if os.path.exists(data_path):
df = pd.read_csv(data_path)
else:
pro = ts.pro_api(api_key)
if if_news_or_reports:
df = pro.news(**{
"start_date": start_date,
"end_date": end_date,
"src": "sina",
"limit": limit_line,
"offset": 0
}, fields=[
"datetime",
"title"
"content",
])
else:
df = pro.jinse(**{
"start_date": start_date,
"end_date": end_date,
"limit": limit_line,
"offset": 0
}, fields=[
"datetime",
"title",
"content",
])
df.to_csv(data_path)
max_num_news = 4
max_len_title = 32
max_len_content = 0
data_str = ""
for i in df.index[:max_num_news]:
row = df.iloc[i]
title = row['title'][1:max_len_title]
content = row['content'][:max_len_content]
data_str += f"{title}, {content}\n"
return data_str
def get_news_from_market_aux(api_key: str, data_path: str = 'finance_news_from_market_aux.txt'):
limit_line = 4
if os.path.exists(data_path):
with open(data_path, 'r') as f:
data = json.load(f)
else:
conn = http.client.HTTPSConnection('api.marketaux.com')
params = urllib.parse.urlencode({
'api_token': api_key,
"found": 8,
"returned": 3,
"limit": limit_line,
"page": 1,
"source_id": "adweek.com-1",
"domain": "adweek.com",
"language": "en",
})
conn.request('GET', '/v1/news/all?{}'.format(params))
data = conn.getresponse()
data = data.read().decode('utf-8')
data = json.loads(data)
with open(data_path, 'w') as f:
f.write(json.dumps(data, indent=2))
assert isinstance(data, dict)
'''concert dict to string (Title: ... Content: ...)'''
max_num_news = 8
max_len_title = 32 * 4
max_len_content = 0 * 4
data = data['data']
data_str = ""
for item in data[:max_num_news]:
title = item['title'][:max_len_title]
content = item['description'][:max_len_content]
data_str += f"{title}, {content}\n"
return data_str
def get_result_from_openai_davinci(api_key: str, prompt_str: str):
max_tokens = 64
# openai.api_key =
openai.api_key = api_key # os.getenv("OPENAI_API_KEY")
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt_str,
temperature=0,
max_tokens=max_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response
API_KEY_Tushare = '' # https://www.tushare.pro/user/token
API_KEY_MarketAUX = '' # https://www.marketaux.com/account/dashboard
API_KEY_OpenAI = '' # https://platform.openai.com/account/api-keys
def run_news_in_chinese():
prompt_str = "读下方新闻,列举3个可能受影响的美国股票,分别简短地判断积极或消极:\n\n"
prompt_str += get_news_from_tushare(api_key=API_KEY_Tushare)
print(f"\n====\n{prompt_str}")
result_str = get_result_from_openai_davinci(api_key=API_KEY_OpenAI, prompt_str=prompt_str)
print(f"\n====\n{result_str}")
def run_news_in_english():
prompt_str = "Read following news and list 3 stocks that may be affected, " \
"briefly judge each one 'positive' or 'negative':\n\n"
prompt_str += get_news_from_market_aux(api_key=API_KEY_MarketAUX)
print(f"\n====\n{prompt_str}")
result_str = get_result_from_openai_davinci(api_key=API_KEY_OpenAI, prompt_str=prompt_str)
print(f"\n====\n{result_str}")
if __name__ == '__main__':
run_news_in_chinese()
run_news_in_english()
|