File size: 4,720 Bytes
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from seqeval.metrics import classification_report
from datasets import load_dataset, load_from_disk
from tqdm import tqdm
import datasets
import torch
from torch.utils.data import DataLoader
from functools import partial
import re
import sys
import numpy as np
from fingpt.FinGPT_Benchmark.utils import *
from pathlib import Path
sys.path.append('../')
    

relations = [
    'product_or_material_produced',
    'manufacturer',
    'distributed_by',
    'industry',
    'position_held',
    'original_broadcaster',
    'owned_by',
    'founded_by',
    'distribution_format',
    'headquarters_location',
    'stock_exchange',
    'currency',
    'parent_organization',
    'chief_executive_officer',
    'director_/_manager',
    'owner_of',
    'operator',
    'member_of',
    'employer',
    'chairperson',
    'platform',
    'subsidiary',
    'legal_form',
    'publisher',
    'developer',
    'brand',
    'business_division',
    'location_of_formation',
    'creator',
]


def cvt_text_to_pred(ref, text):
    
    preds = []
    for pred_txt in text.strip('.').split(';'):
        pred_match = re.match(r'^(.*):(.*),(.*)$', pred_txt)
        if pred_match is not None:
            relation, word1, word2 = pred_match.group(1).strip(), pred_match.group(2).strip(), pred_match.group(3).strip()
            if relation in relations and word1 in ref and word2 in ref:
                preds.append((relation, word1, word2))
            else:
                print("Not found Error: ", relation, word1, word2, ref)    
        else:
            print("Parse Error: ", pred_txt)
            
    return preds


def map_output(feature):

    ref = feature['input']
    label = cvt_text_to_pred(ref, feature['output'])
    pred = cvt_text_to_pred(ref, feature['out_text'])
    
    return {'label': label, 'pred': pred}


def calc_metric(gt_list, pred_list):
    # Initialize variables for true positives, false positives, and false negatives
    true_positives = 0
    false_positives = 0
    false_negatives = 0
    
    for (ground_truth, predicted_relations) in zip(gt_list, pred_list):
        # Calculate true positives, false positives, and false negatives
        for relation in predicted_relations:
            if relation in ground_truth:
                true_positives += 1
            else:
                false_positives += 1

        for relation in ground_truth:
            if relation not in predicted_relations:
                false_negatives += 1

    # Calculate precision, recall, and F1-Score
    precision = true_positives / (true_positives + false_positives)
    recall = true_positives / (true_positives + false_negatives)
    f1_score = 2 * (precision * recall) / (precision + recall)

    # Print the results
    print("Precision:", precision)
    print("Recall:", recall)
    print("F1-Score:", f1_score)
    

def test_re(args, model, tokenizer):

    dataset = load_from_disk(Path(__file__).parent.parent / 'data/fingpt-finred-re')['test']
    dataset = dataset.train_test_split(0.2, seed=42)['test']
    dataset = dataset.map(partial(test_mapping, args), load_from_cache_file=False)
    
    def collate_fn(batch):
        inputs = tokenizer(
            [f["prompt"] for f in batch], return_tensors='pt',
            padding=True, max_length=args.max_length,
            return_token_type_ids=False
        )
        return inputs
    
    dataloader = DataLoader(dataset, batch_size=args.batch_size, collate_fn=collate_fn, shuffle=False)
    
    out_text_list = []
    log_interval = len(dataloader) // 5

    for idx, inputs in enumerate(tqdm(dataloader)):
        inputs = {key: value.to(model.device) for key, value in inputs.items()}
        res = model.generate(**inputs, max_length=args.max_length, eos_token_id=tokenizer.eos_token_id, max_new_tokens=128)
        res_sentences = [tokenizer.decode(i, skip_special_tokens=True) for i in res]
        if (idx + 1) % log_interval == 0:
            tqdm.write(f'{idx}: {res_sentences[0]}')
        out_text = [o.split("Answer: ")[1] for o in res_sentences]
        out_text_list += out_text
        torch.cuda.empty_cache()
    
    dataset = dataset.add_column("out_text", out_text_list)
    dataset = dataset.map(map_output, load_from_cache_file=False)    
    dataset = dataset.to_pandas()
    
    print(dataset)
    dataset.to_csv('tmp.csv')
    
    label = [[tuple(t) for t in d.tolist()] for d in dataset['label']]
    pred = [[tuple(t) for t in d.tolist()] for d in dataset['pred']]
    
    label_re = [[t[0] for t in d.tolist()] for d in dataset['label']]
    pred_re = [[t[0] for t in d.tolist()] for d in dataset['pred']]
    
    calc_metric(label, pred)
    
    calc_metric(label_re, pred_re)

    return dataset