File size: 7,658 Bytes
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import sys
from datetime import datetime
from dotenv import load_dotenv

from image_search import search_unsplash_image
from md_html import convert_single_md_to_html as convert_md_to_html
from news_analysis import fetch_deep_news, generate_value_investor_report

import pandas as pd
from csv_utils import detect_changes


# Setup paths
BASE_DIR = os.path.dirname(os.path.dirname(__file__))  # one level up from src/
DATA_DIR = os.path.join(BASE_DIR, "data")
HTML_DIR = os.path.join(BASE_DIR, "html")
CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")

os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(HTML_DIR, exist_ok=True)

# Load .env
load_dotenv()

def build_metrics_box(topic, num_articles):
    now = datetime.now().strftime("%Y-%m-%d %H:%M")
    return f"""
> Topic: `{topic}`
> Articles Collected: `{num_articles}`
> Generated: `{now}`
>
"""

def run_value_investing_analysis(csv_path):
    current_df = pd.read_csv(csv_path)
    prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
    if os.path.exists(prev_path):
        previous_df = pd.read_csv(prev_path)
        changed_df = detect_changes(current_df, previous_df)
        if changed_df.empty:
            print("βœ… No changes detected. Skipping processing.")
            return []
    else:
        changed_df = current_df

    new_md_files = []

    for _, row in changed_df.iterrows():
        topic = row.get("topic")
        timespan = row.get("timespan_days", 7)
        print(f"\nπŸ” Processing: {topic} ({timespan} days)")

        news = fetch_deep_news(topic, timespan)
        if not news:
            print(f"⚠️ No news found for: {topic}")
            continue

        report_body = generate_value_investor_report(topic, news)
        image_url, image_credit = search_unsplash_image(topic)
        metrics_md = build_metrics_box(topic, len(news))
        full_md = metrics_md + report_body

        base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}"
        filename = base_filename + ".md"
        filepath = os.path.join(DATA_DIR, filename)

        counter = 1
        while os.path.exists(filepath):
            filename = f"{base_filename}_{counter}.md"
            filepath = os.path.join(DATA_DIR, filename)
            counter += 1

        with open(filepath, "w", encoding="utf-8") as f:
            f.write(full_md)

        new_md_files.append(filepath)

    print(f"βœ… Markdown saved to: {DATA_DIR}")
    current_df.to_csv(prev_path, index=False)
    return new_md_files


def run_pipeline(csv_path, tavily_api_key):
    os.environ["TAVILY_API_KEY"] = tavily_api_key

    new_md_files = run_value_investing_analysis(csv_path)
    new_html_paths = []

    for md_path in new_md_files:
        convert_md_to_html(md_path, HTML_DIR)
        html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html"))
        new_html_paths.append(html_path)

    return new_html_paths


if __name__ == "__main__":
    md_files = run_value_investing_analysis(CSV_PATH)
    for md in md_files:
        convert_md_to_html(md, HTML_DIR)
    print(f"🌐 All reports converted to HTML at: {HTML_DIR}")


# import os
# import sys
# from datetime import datetime
# from dotenv import load_dotenv

# #rom news_analysis import load_csv, fetch_deep_news, generate_value_investor_report
# from image_search import search_unsplash_image
# from md_html import convert_md_folder_to_html
# from md_html import convert_single_md_to_html as convert_md_to_html


# from news_analysis import fetch_deep_news, generate_value_investor_report

# import pandas as pd
# from csv_utils import detect_changes


# # Adds the absolute path of /external to your module path
# BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# EXTERNAL_PATH = os.path.join(BASE_DIR, "external")
# if EXTERNAL_PATH not in sys.path:
#     sys.path.append(EXTERNAL_PATH)

# # Load .env
# load_dotenv()

# # === Base Folder Setup ===
# BASE_DIR = os.path.dirname(os.path.dirname(__file__))  # one level up from src/
# DATA_DIR = os.path.join(BASE_DIR, "data")
# HTML_DIR = os.path.join(BASE_DIR, "html")
# CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")



# # Ensure output folders exist
# os.makedirs(DATA_DIR, exist_ok=True)
# os.makedirs(HTML_DIR, exist_ok=True)

# # === Metrics Block ===
# def build_metrics_box(topic, num_articles):
#     now = datetime.now().strftime("%Y-%m-%d %H:%M")
#     return f"""
# > Topic: `{topic}`
# > Articles Collected: `{num_articles}`
# > Generated: `{now}`
# >
# """

# # === Main Logic ===
# def run_value_investing_analysis(csv_path):
#     current_df = pd.read_csv(csv_path)

#     prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
#     if os.path.exists(prev_path):
#         previous_df = pd.read_csv(prev_path)
#         changed_df = detect_changes(current_df, previous_df)
#         if changed_df.empty:
#             print("βœ… No changes detected. Skipping processing.")
#             return
#     else:
#         changed_df = current_df

#     for _, row in changed_df.iterrows():
#         topic = row.get("topic")
#         timespan = row.get("timespan_days", 7)
#         print(f"\nπŸ” Processing: {topic} ({timespan} days)")

#         news = fetch_deep_news(topic, timespan)
#         if not news:
#             print(f"⚠️ No news found for: {topic}")
#             continue

#         report_body = generate_value_investor_report(topic, news)
#         image_url, image_credit = search_unsplash_image(topic)
#         metrics_md = build_metrics_box(topic, len(news))
#         full_md = metrics_md + report_body

#         base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}"
#         filename = base_filename + ".md"
#         filepath = os.path.join(DATA_DIR, filename)

#         counter = 1
#         while os.path.exists(filepath):
#             filename = f"{base_filename}_{counter}.md"
#             filepath = os.path.join(DATA_DIR, filename)
#             counter += 1

#         with open(filepath, "w", encoding="utf-8") as f:
#             f.write(full_md)

#     print(f"βœ… Markdown saved to: {DATA_DIR}")
#     current_df.to_csv(prev_path, index=False)  # Save current as previous for next run

# #convert_md_folder_to_html(DATA_DIR, HTML_DIR)
# #print(f"🌐 All reports converted to HTML at: {HTML_DIR}")

# # === Streamlit Integration Wrapper ===
# def run_pipeline(csv_path, tavily_api_key):
#     """
#     Runs the full analysis pipeline for Streamlit.

#     Returns:
#         str: Path to the generated HTML report.
#     """
#     os.environ["TAVILY_API_KEY"] = tavily_api_key

#     run_value_investing_analysis(csv_path)

#     # Combine all generated markdown into one file
#     combined_md_path = os.path.join(DATA_DIR, "combined_report.md")
#     with open(combined_md_path, "w", encoding="utf-8") as outfile:
#         for fname in os.listdir(DATA_DIR):
#             if fname.endswith(".md"):
#                 with open(os.path.join(DATA_DIR, fname), "r", encoding="utf-8") as f:
#                     outfile.write(f.read() + "\n\n---\n\n")

#     # Convert to HTML
#     # html_output_path = os.path.join(HTML_DIR, "news_report.html")
#     # convert_md_to_html(combined_md_path, html_output_path)
#     convert_md_to_html(combined_md_path, HTML_DIR)
#     html_output_path = os.path.join(HTML_DIR, "combined_report.html")


#     return html_output_path


# # === Run ===
# if __name__ == "__main__":
#     run_value_investing_analysis(CSV_PATH)
#     convert_md_folder_to_html(DATA_DIR, HTML_DIR)
#     print(f"🌐 All reports converted to HTML at: {HTML_DIR}")