Spaces:
Running
Running
File size: 10,907 Bytes
342fd5f 8e384aa 342fd5f 8e384aa 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 7a4bde2 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 8e384aa 7a4bde2 8e384aa 7a4bde2 8e384aa 7a4bde2 8e384aa 3e4bf85 8e384aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# import os
# import sys
# import tempfile
# import time
# import itertools
# import streamlit as st
# import pandas as pd
# from threading import Thread
# from io import StringIO
# # Add 'src' to Python path so we can import main.py
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# from main import run_pipeline
# st.set_page_config(page_title="π° AI News Analyzer", layout="wide")
# st.title("π§ AI-Powered Investing News Analyzer")
# # === API Key Input ===
# st.subheader("π API Keys")
# openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
# tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# # === Topic Input ===
# st.subheader("π Topics of Interest")
# topics_data = []
# with st.form("topics_form"):
# topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
# for i in range(topic_count):
# col1, col2 = st.columns(2)
# with col1:
# topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
# with col2:
# days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
# topics_data.append({"topic": topic, "timespan_days": days})
# submitted = st.form_submit_button("Run Analysis")
# # === Submission logic ===
# if submitted:
# if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
# st.warning("Please fill in all fields.")
# else:
# os.environ["OPENAI_API_KEY"] = openai_api_key
# os.environ["TAVILY_API_KEY"] = tavily_api_key
# df = pd.DataFrame(topics_data)
# with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
# df.to_csv(tmp_csv.name, index=False)
# csv_path = tmp_csv.name
# # === UI Elements ===
# spinner_box = st.empty() # For rotating messages
# log_box = st.empty() # For logs
# logs = []
# rotating = True
# def log(msg):
# logs.append(msg)
# log_box.code("\n".join(logs))
# # === Rotating UI Messages ===
# def rotating_messages():
# messages = itertools.cycle([
# "π Searching financial news...",
# "π§ Running language models...",
# "π Analyzing investor sentiment...",
# "π Summarizing key takeaways...",
# "πΉ Building markdown reports..."
# ])
# while rotating:
# spinner_box.markdown(f"β³ {next(messages)}")
# time.sleep(1.5)
# rotator_thread = Thread(target=rotating_messages)
# rotator_thread.start()
# try:
# # Check API Keys
# import openai
# openai.OpenAI(api_key=openai_api_key).models.list()
# log("β
OpenAI API key is valid.")
# import requests
# tavily_test = requests.post(
# "https://api.tavily.com/search",
# headers={"Authorization": f"Bearer {tavily_api_key}"},
# json={"query": "test", "days": 1, "max_results": 1}
# )
# if tavily_test.status_code == 200:
# log("β
Tavily API key is valid.")
# else:
# raise ValueError(f"Tavily error: {tavily_test.status_code} - {tavily_test.text}")
# # Run the full pipeline
# log("π Running analysis pipeline...")
# output_path = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
# rotating = False
# rotator_thread.join()
# spinner_box.success("β
Analysis complete!")
# if output_path and isinstance(output_path, list):
# for path in output_path:
# if os.path.exists(path):
# with open(path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# filename = os.path.basename(path)
# st.download_button(
# label=f"π₯ Download {filename}",
# data=html_content,
# file_name=filename,
# mime="text/html"
# )
# st.components.v1.html(html_content, height=600, scrolling=True)
# else:
# st.error("β No reports were generated.")
# except Exception as e:
# rotating = False
# rotator_thread.join()
# spinner_box.error("β Failed.")
# log_box.error(f"β Error: {e}")
##################################################################################################
##################################################################################################
import os
import sys
import tempfile
import time
import itertools
import streamlit as st
import pandas as pd
from threading import Thread
from io import StringIO
# Add 'src' to Python path so we can import main.py
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
from main import run_pipeline
st.set_page_config(page_title="π° AI News Analyzer", layout="wide")
st.title("π§ AI-Powered Investing News Analyzer")
# === State control ===
if "running" not in st.session_state:
st.session_state.running = False
if "stop_requested" not in st.session_state:
st.session_state.stop_requested = False
# === Tabs ===
tabs = st.tabs(["π₯ Input", "π€ Results", "πͺ΅ Logs"])
input_tab, result_tab, log_tab = tabs
# === Input Tab ===
with input_tab:
st.subheader("π API Keys")
openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
st.subheader("π Topics of Interest")
topics_data = []
with st.form("topics_form"):
topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
for i in range(topic_count):
col1, col2 = st.columns(2)
with col1:
topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
with col2:
days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
topics_data.append({"topic": topic, "timespan_days": days})
run_btn = st.form_submit_button(
"Run Analysis" if not st.session_state.running else "Running...", disabled=st.session_state.running
)
# === Output placeholders ===
with result_tab:
spinner_box = st.empty()
download_box = st.empty()
with log_tab:
log_box = st.empty()
stop_btn = st.button("π Stop Analysis", disabled=not st.session_state.running)
# === Run if submitted ===
if run_btn and not st.session_state.running:
if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
st.warning("Please fill in all fields.")
else:
os.environ["OPENAI_API_KEY"] = openai_api_key
os.environ["TAVILY_API_KEY"] = tavily_api_key
st.session_state.running = True
st.session_state.stop_requested = False
logs = []
df = pd.DataFrame(topics_data)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
df.to_csv(tmp_csv.name, index=False)
csv_path = tmp_csv.name
def log(msg, level="info"):
emoji = {"info": "βΉοΈ", "warning": "β οΈ", "error": "β"}.get(level, "")
logs.append(f"{emoji} {msg}")
colors = {"info": "blue", "warning": "orange", "error": "red"}
styled = [f'<span style="color:{colors.get(level, "black")};">{emoji} {msg}</span>' for msg in logs]
log_box.markdown("<br>".join(styled), unsafe_allow_html=True)
# Rotating status messages
def rotating_messages():
phrases = itertools.cycle([
"π Searching financial news...",
"π§ Running language models...",
"π Analyzing investor sentiment...",
"π Summarizing insights...",
"π‘ Generating markdown reports..."
])
while st.session_state.running and not st.session_state.stop_requested:
spinner_box.markdown(f"β³ {next(phrases)}")
time.sleep(1.5)
rotator = Thread(target=rotating_messages)
rotator.start()
try:
import openai
openai.OpenAI(api_key=openai_api_key).models.list()
log("OpenAI API key validated.", "info")
import requests
test = requests.post(
"https://api.tavily.com/search",
headers={"Authorization": f"Bearer {tavily_api_key}"},
json={"query": "test", "days": 1, "max_results": 1}
)
if test.status_code == 200:
log("Tavily API key validated.", "info")
else:
raise ValueError(f"Tavily key rejected: {test.status_code} {test.text}")
# Run the pipeline
def progress_callback(msg):
if st.session_state.stop_requested:
raise Exception("β Analysis stopped by user.")
log(msg, "info")
log("Starting pipeline...", "info")
output_path = run_pipeline(csv_path, tavily_api_key, progress_callback=progress_callback)
st.session_state.running = False
rotator.join()
spinner_box.success("β
Analysis complete!")
if output_path:
for path in output_path:
if os.path.exists(path):
with open(path, "r", encoding="utf-8") as file:
html_content = file.read()
filename = os.path.basename(path)
download_box.download_button(
f"π₯ Download {filename}", html_content, filename=filename, mime="text/html"
)
download_box.components.v1.html(html_content, height=600, scrolling=True)
else:
log("No reports were generated.", "warning")
spinner_box.error("β No reports were generated.")
except Exception as e:
st.session_state.running = False
rotator.join()
spinner_box.error(f"β Error: {e}")
log(str(e), "error")
# === Handle manual stop ===
if stop_btn and st.session_state.running:
st.session_state.stop_requested = True
log("π Stop requested by user...", "warning")
|