File size: 7,050 Bytes
9df4cc0
 
 
 
3e4bf85
9df4cc0
 
 
 
 
a9b1809
 
9df4cc0
 
 
 
 
 
 
a9b1809
9df4cc0
 
 
 
 
 
 
 
 
 
 
0d9c76e
9df4cc0
 
0d9c76e
9df4cc0
 
 
 
0d9c76e
 
9df4cc0
 
 
 
 
 
 
 
 
0d9c76e
 
 
 
9df4cc0
 
 
0d9c76e
 
 
 
9df4cc0
 
3e4bf85
0d9c76e
 
9c57dcd
9df4cc0
0d9c76e
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d9c76e
 
9df4cc0
 
 
0d9c76e
9df4cc0
 
0d9c76e
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d9c76e
 
9df4cc0
 
0d9c76e
3e4bf85
9df4cc0
 
 
 
 
 
 
 
3e4bf85
 
 
9df4cc0
 
 
 
 
 
 
 
 
0d9c76e
9df4cc0
 
 
 
 
 
0d9c76e
3e4bf85
9df4cc0
 
 
3e4bf85
 
9df4cc0
 
 
0d9c76e
9df4cc0
 
 
0d9c76e
9df4cc0
 
a9b1809
0d9c76e
3e4bf85
0d9c76e
 
 
 
3e4bf85
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e4bf85
 
0d9c76e
3e4bf85
 
9df4cc0
0d9c76e
 
9df4cc0
 
0d9c76e
3e4bf85
9df4cc0
3e4bf85
 
 
 
9df4cc0
3e4bf85
9df4cc0
0d9c76e
9df4cc0
3e4bf85
 
 
9df4cc0
3e4bf85
0d9c76e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import sys
from datetime import datetime
from dotenv import load_dotenv
import pandas as pd

from md_html import convert_single_md_to_html as convert_md_to_html
from news_analysis import fetch_deep_news, generate_value_investor_report
from csv_utils import detect_changes

# === Setup Paths ===
BASE_DIR = os.path.dirname(os.path.dirname(__file__))
DATA_DIR = os.path.join(BASE_DIR, "data")
HTML_DIR = os.path.join(BASE_DIR, "html")
CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")

os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(HTML_DIR, exist_ok=True)

# === Load .env ===
load_dotenv()

def build_metrics_box(topic, num_articles):
    now = datetime.now().strftime("%Y-%m-%d %H:%M")
    return f"""
> Topic: `{topic}`
> Articles Collected: `{num_articles}`
> Generated: `{now}`
>
"""

def run_value_investing_analysis(csv_path, progress_callback=None):
    current_df = pd.read_csv(csv_path)
    prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
    
    if os.path.exists(prev_path):
        previous_df = pd.read_csv(prev_path)
        changed_df = detect_changes(current_df, previous_df)
        if changed_df.empty:
            if progress_callback:
                progress_callback("βœ… No changes detected. Skipping processing.")
            return []
    else:
        changed_df = current_df

    new_md_files = []

    for _, row in changed_df.iterrows():
        topic = row.get("topic")
        timespan = row.get("timespan_days", 7)
        msg = f"πŸ” Processing: {topic} ({timespan} days)"
        print(msg)
        if progress_callback:
            progress_callback(msg)

        news = fetch_deep_news(topic, timespan)
        if not news:
            warning = f"⚠️ No news found for: {topic}"
            print(warning)
            if progress_callback:
                progress_callback(warning)
            continue

        report_body = generate_value_investor_report(topic, news)
        image_url = "https://via.placeholder.com/1281x721?text=No+Image+Available"
        image_credit = "Image placeholder"

        metrics_md = build_metrics_box(topic, len(news))
        full_md = metrics_md + report_body

        base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}"
        filename = base_filename + ".md"
        filepath = os.path.join(DATA_DIR, filename)

        counter = 1
        while os.path.exists(filepath):
            filename = f"{base_filename}_{counter}.md"
            filepath = os.path.join(DATA_DIR, filename)
            counter += 1

        with open(filepath, "w", encoding="utf-8") as f:
            f.write(full_md)

        new_md_files.append(filepath)

    if progress_callback:
        progress_callback(f"βœ… Markdown saved to: {DATA_DIR}")
    current_df.to_csv(prev_path, index=False)
    return new_md_files

def run_pipeline(csv_path, tavily_api_key, progress_callback=None):
    os.environ["TAVILY_API_KEY"] = tavily_api_key

    new_md_files = run_value_investing_analysis(csv_path, progress_callback)
    new_html_paths = []

    for md_path in new_md_files:
        convert_md_to_html(md_path, HTML_DIR)
        html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html"))
        new_html_paths.append(html_path)

    return new_html_paths

if __name__ == "__main__":
    md_files = run_value_investing_analysis(CSV_PATH)
    for md in md_files:
        convert_md_to_html(md, HTML_DIR)
    print(f"🌐 All reports converted to HTML at: {HTML_DIR}")

# import os
# import sys
# from datetime import datetime
# from dotenv import load_dotenv

# from image_search import search_unsplash_image
# from md_html import convert_single_md_to_html as convert_md_to_html
# from news_analysis import fetch_deep_news, generate_value_investor_report

# import pandas as pd
# from csv_utils import detect_changes


# # Setup paths
# BASE_DIR = os.path.dirname(os.path.dirname(__file__))  # one level up from src/
# DATA_DIR = os.path.join(BASE_DIR, "data")
# HTML_DIR = os.path.join(BASE_DIR, "html")
# CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")

# os.makedirs(DATA_DIR, exist_ok=True)
# os.makedirs(HTML_DIR, exist_ok=True)

# # Load .env
# load_dotenv()

# def build_metrics_box(topic, num_articles):
#     now = datetime.now().strftime("%Y-%m-%d %H:%M")
#     return f"""
# > Topic: `{topic}`
# > Articles Collected: `{num_articles}`
# > Generated: `{now}`
# >
# """

# def run_value_investing_analysis(csv_path):
#     current_df = pd.read_csv(csv_path)
#     prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
#     if os.path.exists(prev_path):
#         previous_df = pd.read_csv(prev_path)
#         changed_df = detect_changes(current_df, previous_df)
#         if changed_df.empty:
#             print("βœ… No changes detected. Skipping processing.")
#             return []
#     else:
#         changed_df = current_df

#     new_md_files = []

#     for _, row in changed_df.iterrows():
#         topic = row.get("topic")
#         timespan = row.get("timespan_days", 7)
#         print(f"\nπŸ” Processing: {topic} ({timespan} days)")

#         news = fetch_deep_news(topic, timespan)
#         if not news:
#             print(f"⚠️ No news found for: {topic}")
#             continue

#         report_body = generate_value_investor_report(topic, news)
#         from image_search import search_unsplash_image

#         # Later inside your loop
#         image_url, image_credit = search_unsplash_image(topic)

#         #image_url, image_credit = search_unsplash_image(topic, os.getenv("OPENAI_API_KEY"))

#         metrics_md = build_metrics_box(topic, len(news))
#         full_md = metrics_md + report_body

#         base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}"
#         filename = base_filename + ".md"
#         filepath = os.path.join(DATA_DIR, filename)

#         counter = 1
#         while os.path.exists(filepath):
#             filename = f"{base_filename}_{counter}.md"
#             filepath = os.path.join(DATA_DIR, filename)
#             counter += 1

#         with open(filepath, "w", encoding="utf-8") as f:
#             f.write(full_md)

#         new_md_files.append(filepath)

#     print(f"βœ… Markdown saved to: {DATA_DIR}")
#     current_df.to_csv(prev_path, index=False)
#     return new_md_files


# def run_pipeline(csv_path, tavily_api_key):
#     os.environ["TAVILY_API_KEY"] = tavily_api_key

#     new_md_files = run_value_investing_analysis(csv_path)
#     new_html_paths = []

#     for md_path in new_md_files:
#         convert_md_to_html(md_path, HTML_DIR)
#         html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html"))
#         new_html_paths.append(html_path)

#     return new_html_paths


# if __name__ == "__main__":
#     md_files = run_value_investing_analysis(CSV_PATH)
#     for md in md_files:
#         convert_md_to_html(md, HTML_DIR)
#     print(f"🌐 All reports converted to HTML at: {HTML_DIR}")