Spaces:
Runtime error
Runtime error
File size: 7,550 Bytes
9df4cc0 3e4bf85 3778f9f 9df4cc0 3778f9f 9df4cc0 3778f9f a9b1809 9df4cc0 3778f9f 9df4cc0 3778f9f 9df4cc0 3778f9f 9df4cc0 3778f9f 9df4cc0 3778f9f 9df4cc0 3778f9f 3e4bf85 9df4cc0 3778f9f 9df4cc0 3778f9f 9df4cc0 3778f9f 3e4bf85 9df4cc0 3e4bf85 9df4cc0 3778f9f 9df4cc0 3778f9f 9df4cc0 a9b1809 3778f9f 3e4bf85 9df4cc0 3e4bf85 3778f9f 3e4bf85 9df4cc0 3778f9f 9df4cc0 3778f9f 3e4bf85 9df4cc0 3e4bf85 9df4cc0 3e4bf85 9df4cc0 3e4bf85 9df4cc0 3e4bf85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import os
import pandas as pd
from datetime import datetime
from md_html import convert_single_md_to_html as convert_md_to_html
from news_analysis import fetch_deep_news, generate_value_investor_report
from csv_utils import detect_changes
from fin_interpreter import analyze_article # For FinBERT + FinGPT signals
# === Paths ===
BASE_DIR = os.path.dirname(os.path.dirname(__file__))
DATA_DIR = os.path.join(BASE_DIR, "data")
HTML_DIR = os.path.join(BASE_DIR, "html")
CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(HTML_DIR, exist_ok=True)
def run_pipeline(topics, openai_api_key=None, tavily_api_key=None):
"""
Main pipeline:
1. Fetch articles for topics.
2. Analyze with FinBERT + FinGPT.
3. Generate markdown report.
4. Return (report_md, articles_df, insights_df).
"""
all_articles = []
# Fetch and analyze articles
for topic, days in topics:
try:
articles = fetch_deep_news(topic, days, tavily_api_key)
for article in articles:
sentiment, confidence, signal = analyze_article(article.get("summary", ""))
all_articles.append({
"Title": article.get("title"),
"URL": article.get("url"),
"Summary": article.get("summary"),
"Priority": article.get("priority", "Low"),
"Date": article.get("date"),
"Company": article.get("company", topic), # fallback if no company detected
"Sentiment": sentiment,
"Confidence": confidence,
"Signal": signal
})
except Exception as e:
print(f"Error fetching/analyzing articles for topic '{topic}': {e}")
# Convert to DataFrame
articles_df = pd.DataFrame(all_articles)
# Generate Markdown report (existing behavior)
report_md = ""
try:
report_md = generate_value_investor_report(all_articles, openai_api_key)
except Exception as e:
print(f"Error generating report: {e}")
report_md = "Error generating report."
# Build insights (aggregated by company)
insights_df = build_company_insights(articles_df)
return report_md, articles_df, insights_df
def build_company_insights(articles_df):
"""
Aggregates article data into a company-level insights table.
Columns: Company, Mentions, Avg Sentiment, Top Signal, Sector
"""
if articles_df.empty:
return pd.DataFrame()
# Simple aggregation
grouped = (
articles_df
.groupby("Company")
.agg({
"Title": "count",
"Sentiment": lambda x: x.mode()[0] if not x.mode().empty else "Neutral",
"Signal": lambda x: x.mode()[0] if not x.mode().empty else "Watch"
})
.reset_index()
.rename(columns={"Title": "Mentions"})
)
# Add a placeholder Sector column (can improve later with classification)
grouped["Sector"] = grouped["Company"].apply(lambda c: detect_sector_from_company(c))
return grouped
def detect_sector_from_company(company_name):
"""
Simple keyword-based sector detection (can be replaced with GPT classification).
"""
company_name = company_name.lower()
if "energy" in company_name or "nuclear" in company_name:
return "Energy"
elif "fin" in company_name or "bank" in company_name:
return "Finance"
elif "chip" in company_name or "semiconductor" in company_name:
return "Tech Hardware"
else:
return "General"
if __name__ == "__main__":
# Test run (local)
test_topics = [("nuclear energy", 7)]
md, art_df, ins_df = run_pipeline(test_topics)
print(md)
print(art_df.head())
print(ins_df.head())
# import os
# import sys
# from datetime import datetime
# from dotenv import load_dotenv
# import pandas as pd
# from md_html import convert_single_md_to_html as convert_md_to_html
# from news_analysis import fetch_deep_news, generate_value_investor_report
# from csv_utils import detect_changes
# # === Setup Paths ===
# BASE_DIR = os.path.dirname(os.path.dirname(__file__))
# DATA_DIR = os.path.join(BASE_DIR, "data")
# HTML_DIR = os.path.join(BASE_DIR, "html")
# CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")
# os.makedirs(DATA_DIR, exist_ok=True)
# os.makedirs(HTML_DIR, exist_ok=True)
# # === Load .env ===
# load_dotenv()
# def build_metrics_box(topic, num_articles):
# now = datetime.now().strftime("%Y-%m-%d %H:%M")
# return f"""
# > Topic: `{topic}`
# > Articles Collected: `{num_articles}`
# > Generated: `{now}`
# >
# """
# def run_value_investing_analysis(csv_path, progress_callback=None):
# current_df = pd.read_csv(csv_path)
# prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
# if os.path.exists(prev_path):
# previous_df = pd.read_csv(prev_path)
# changed_df = detect_changes(current_df, previous_df)
# if changed_df.empty:
# if progress_callback:
# progress_callback("β
No changes detected. Skipping processing.")
# return []
# else:
# changed_df = current_df
# new_md_files = []
# for _, row in changed_df.iterrows():
# topic = row.get("topic")
# timespan = row.get("timespan_days", 7)
# msg = f"π Processing: {topic} ({timespan} days)"
# print(msg)
# if progress_callback:
# progress_callback(msg)
# news = fetch_deep_news(topic, timespan)
# if not news:
# warning = f"β οΈ No news found for: {topic}"
# print(warning)
# if progress_callback:
# progress_callback(warning)
# continue
# report_body = generate_value_investor_report(topic, news)
# image_url = "https://via.placeholder.com/1281x721?text=No+Image+Available"
# image_credit = "Image placeholder"
# metrics_md = build_metrics_box(topic, len(news))
# full_md = metrics_md + report_body
# base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}"
# filename = base_filename + ".md"
# filepath = os.path.join(DATA_DIR, filename)
# counter = 1
# while os.path.exists(filepath):
# filename = f"{base_filename}_{counter}.md"
# filepath = os.path.join(DATA_DIR, filename)
# counter += 1
# with open(filepath, "w", encoding="utf-8") as f:
# f.write(full_md)
# new_md_files.append(filepath)
# if progress_callback:
# progress_callback(f"β
Markdown saved to: {DATA_DIR}")
# current_df.to_csv(prev_path, index=False)
# return new_md_files
# def run_pipeline(csv_path, tavily_api_key, progress_callback=None):
# os.environ["TAVILY_API_KEY"] = tavily_api_key
# new_md_files = run_value_investing_analysis(csv_path, progress_callback)
# new_html_paths = []
# for md_path in new_md_files:
# convert_md_to_html(md_path, HTML_DIR)
# html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html"))
# new_html_paths.append(html_path)
# return new_html_paths
# if __name__ == "__main__":
# md_files = run_value_investing_analysis(CSV_PATH)
# for md in md_files:
# convert_md_to_html(md, HTML_DIR)
# print(f"π All reports converted to HTML at: {HTML_DIR}")
|