File size: 7,550 Bytes
9df4cc0
3e4bf85
3778f9f
9df4cc0
 
 
3778f9f
9df4cc0
3778f9f
a9b1809
9df4cc0
 
 
 
 
 
 
3778f9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df4cc0
3778f9f
9df4cc0
 
3778f9f
 
 
 
 
 
 
9df4cc0
 
 
 
 
 
 
3778f9f
9df4cc0
 
 
 
 
3778f9f
 
9df4cc0
 
 
 
 
 
 
3778f9f
3e4bf85
 
9df4cc0
 
 
 
 
 
 
 
 
3778f9f
9df4cc0
 
3778f9f
9df4cc0
 
 
 
3778f9f
 
3e4bf85
9df4cc0
 
 
3e4bf85
 
9df4cc0
 
 
3778f9f
 
 
 
9df4cc0
 
 
3778f9f
 
 
 
9df4cc0
 
a9b1809
3778f9f
 
3e4bf85
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e4bf85
 
3778f9f
 
3e4bf85
 
9df4cc0
3778f9f
9df4cc0
 
3778f9f
3e4bf85
9df4cc0
3e4bf85
 
 
 
9df4cc0
3e4bf85
9df4cc0
 
3e4bf85
 
 
9df4cc0
3e4bf85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import pandas as pd
from datetime import datetime
from md_html import convert_single_md_to_html as convert_md_to_html
from news_analysis import fetch_deep_news, generate_value_investor_report
from csv_utils import detect_changes
from fin_interpreter import analyze_article  # For FinBERT + FinGPT signals

# === Paths ===
BASE_DIR = os.path.dirname(os.path.dirname(__file__))
DATA_DIR = os.path.join(BASE_DIR, "data")
HTML_DIR = os.path.join(BASE_DIR, "html")
CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")

os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(HTML_DIR, exist_ok=True)

def run_pipeline(topics, openai_api_key=None, tavily_api_key=None):
    """
    Main pipeline:
    1. Fetch articles for topics.
    2. Analyze with FinBERT + FinGPT.
    3. Generate markdown report.
    4. Return (report_md, articles_df, insights_df).
    """
    all_articles = []

    # Fetch and analyze articles
    for topic, days in topics:
        try:
            articles = fetch_deep_news(topic, days, tavily_api_key)
            for article in articles:
                sentiment, confidence, signal = analyze_article(article.get("summary", ""))
                all_articles.append({
                    "Title": article.get("title"),
                    "URL": article.get("url"),
                    "Summary": article.get("summary"),
                    "Priority": article.get("priority", "Low"),
                    "Date": article.get("date"),
                    "Company": article.get("company", topic),  # fallback if no company detected
                    "Sentiment": sentiment,
                    "Confidence": confidence,
                    "Signal": signal
                })
        except Exception as e:
            print(f"Error fetching/analyzing articles for topic '{topic}': {e}")

    # Convert to DataFrame
    articles_df = pd.DataFrame(all_articles)

    # Generate Markdown report (existing behavior)
    report_md = ""
    try:
        report_md = generate_value_investor_report(all_articles, openai_api_key)
    except Exception as e:
        print(f"Error generating report: {e}")
        report_md = "Error generating report."

    # Build insights (aggregated by company)
    insights_df = build_company_insights(articles_df)

    return report_md, articles_df, insights_df


def build_company_insights(articles_df):
    """
    Aggregates article data into a company-level insights table.
    Columns: Company, Mentions, Avg Sentiment, Top Signal, Sector
    """
    if articles_df.empty:
        return pd.DataFrame()

    # Simple aggregation
    grouped = (
        articles_df
        .groupby("Company")
        .agg({
            "Title": "count",
            "Sentiment": lambda x: x.mode()[0] if not x.mode().empty else "Neutral",
            "Signal": lambda x: x.mode()[0] if not x.mode().empty else "Watch"
        })
        .reset_index()
        .rename(columns={"Title": "Mentions"})
    )

    # Add a placeholder Sector column (can improve later with classification)
    grouped["Sector"] = grouped["Company"].apply(lambda c: detect_sector_from_company(c))

    return grouped


def detect_sector_from_company(company_name):
    """
    Simple keyword-based sector detection (can be replaced with GPT classification).
    """
    company_name = company_name.lower()
    if "energy" in company_name or "nuclear" in company_name:
        return "Energy"
    elif "fin" in company_name or "bank" in company_name:
        return "Finance"
    elif "chip" in company_name or "semiconductor" in company_name:
        return "Tech Hardware"
    else:
        return "General"


if __name__ == "__main__":
    # Test run (local)
    test_topics = [("nuclear energy", 7)]
    md, art_df, ins_df = run_pipeline(test_topics)
    print(md)
    print(art_df.head())
    print(ins_df.head())



# import os
# import sys
# from datetime import datetime
# from dotenv import load_dotenv
# import pandas as pd

# from md_html import convert_single_md_to_html as convert_md_to_html
# from news_analysis import fetch_deep_news, generate_value_investor_report
# from csv_utils import detect_changes

# # === Setup Paths ===
# BASE_DIR = os.path.dirname(os.path.dirname(__file__))
# DATA_DIR = os.path.join(BASE_DIR, "data")
# HTML_DIR = os.path.join(BASE_DIR, "html")
# CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")

# os.makedirs(DATA_DIR, exist_ok=True)
# os.makedirs(HTML_DIR, exist_ok=True)

# # === Load .env ===
# load_dotenv()

# def build_metrics_box(topic, num_articles):
#     now = datetime.now().strftime("%Y-%m-%d %H:%M")
#     return f"""
# > Topic: `{topic}`
# > Articles Collected: `{num_articles}`
# > Generated: `{now}`
# >
# """

# def run_value_investing_analysis(csv_path, progress_callback=None):
#     current_df = pd.read_csv(csv_path)
#     prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
    
#     if os.path.exists(prev_path):
#         previous_df = pd.read_csv(prev_path)
#         changed_df = detect_changes(current_df, previous_df)
#         if changed_df.empty:
#             if progress_callback:
#                 progress_callback("βœ… No changes detected. Skipping processing.")
#             return []
#     else:
#         changed_df = current_df

#     new_md_files = []

#     for _, row in changed_df.iterrows():
#         topic = row.get("topic")
#         timespan = row.get("timespan_days", 7)
#         msg = f"πŸ” Processing: {topic} ({timespan} days)"
#         print(msg)
#         if progress_callback:
#             progress_callback(msg)

#         news = fetch_deep_news(topic, timespan)
#         if not news:
#             warning = f"⚠️ No news found for: {topic}"
#             print(warning)
#             if progress_callback:
#                 progress_callback(warning)
#             continue

#         report_body = generate_value_investor_report(topic, news)
#         image_url = "https://via.placeholder.com/1281x721?text=No+Image+Available"
#         image_credit = "Image placeholder"

#         metrics_md = build_metrics_box(topic, len(news))
#         full_md = metrics_md + report_body

#         base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}"
#         filename = base_filename + ".md"
#         filepath = os.path.join(DATA_DIR, filename)

#         counter = 1
#         while os.path.exists(filepath):
#             filename = f"{base_filename}_{counter}.md"
#             filepath = os.path.join(DATA_DIR, filename)
#             counter += 1

#         with open(filepath, "w", encoding="utf-8") as f:
#             f.write(full_md)

#         new_md_files.append(filepath)

#     if progress_callback:
#         progress_callback(f"βœ… Markdown saved to: {DATA_DIR}")
#     current_df.to_csv(prev_path, index=False)
#     return new_md_files

# def run_pipeline(csv_path, tavily_api_key, progress_callback=None):
#     os.environ["TAVILY_API_KEY"] = tavily_api_key

#     new_md_files = run_value_investing_analysis(csv_path, progress_callback)
#     new_html_paths = []

#     for md_path in new_md_files:
#         convert_md_to_html(md_path, HTML_DIR)
#         html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html"))
#         new_html_paths.append(html_path)

#     return new_html_paths

# if __name__ == "__main__":
#     md_files = run_value_investing_analysis(CSV_PATH)
#     for md in md_files:
#         convert_md_to_html(md, HTML_DIR)
#     print(f"🌐 All reports converted to HTML at: {HTML_DIR}")