File size: 6,167 Bytes
342fd5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e4bf85
342fd5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e4bf85
342fd5f
3e4bf85
 
8143a2a
3e4bf85
 
 
342fd5f
3e4bf85
 
 
 
 
 
342fd5f
3e4bf85
 
 
 
 
 
 
 
 
 
 
342fd5f
 
 
 
 
 
 
3e4bf85
 
342fd5f
 
 
 
 
3e4bf85
 
342fd5f
 
 
 
 
 
 
3e4bf85
342fd5f
 
 
3e4bf85
 
342fd5f
 
 
 
 
3e4bf85
 
342fd5f
3e4bf85
342fd5f
3e4bf85
342fd5f
 
 
 
 
 
 
 
 
 
 
 
3e4bf85
 
 
 
 
 
 
 
 
 
342fd5f
3e4bf85
 
 
 
 
 
342fd5f
3e4bf85
342fd5f
3e4bf85
 
 
 
 
 
 
 
 
 
 
 
 
 
342fd5f
3e4bf85
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import sys
import tempfile
import streamlit as st
import pandas as pd
from io import StringIO

# Add 'src' to Python path so we can import main.py
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
from main import run_pipeline

st.set_page_config(page_title="πŸ“° AI News Analyzer", layout="wide")
st.title("🧠 AI-Powered Investing News Analyzer")

# === API Key Input ===
st.subheader("πŸ” API Keys")
openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
tavily_api_key = st.text_input("Tavily API Key", type="password").strip()

# === Topic Input ===
st.subheader("πŸ“ˆ Topics of Interest")
topics_data = []

with st.form("topics_form"):
    topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)

    for i in range(topic_count):
        col1, col2 = st.columns(2)
        with col1:
            topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
        with col2:
            days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
        topics_data.append({"topic": topic, "timespan_days": days})

    submitted = st.form_submit_button("Run Analysis")

# === Submission logic ===
if submitted:
    if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
        st.warning("Please fill in all fields.")
    else:
        os.environ["OPENAI_API_KEY"] = openai_api_key
        os.environ["TAVILY_API_KEY"] = tavily_api_key

        df = pd.DataFrame(topics_data)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
            df.to_csv(tmp_csv.name, index=False)
            csv_path = tmp_csv.name

        progress_box = st.empty()

        def show_progress(msg):
            progress_box.markdown(f"⏳ {msg}")

        try:
            output_path = run_pipeline(csv_path, tavily_api_key, progress_callback=show_progress)
            progress_box.success("βœ… Analysis complete!")

            if output_path and isinstance(output_path, list):
                for path in output_path:
                    if os.path.exists(path):
                        with open(path, 'r', encoding='utf-8') as file:
                            html_content = file.read()
                            filename = os.path.basename(path)

                            st.download_button(
                                label=f"πŸ“₯ Download {filename}",
                                data=html_content,
                                file_name=filename,
                                mime="text/html"
                            )
                            st.components.v1.html(html_content, height=600, scrolling=True)
            else:
                st.error("❌ No reports were generated.")
        except Exception as e:
            progress_box.error(f"❌ Error: {e}")


# import os
# import sys
# import tempfile
# import streamlit as st
# import pandas as pd
# from io import StringIO
# import contextlib

# # Add 'src' to Python path so we can import main.py
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# from main import run_pipeline

# st.set_page_config(page_title="πŸ“° AI News Analyzer", layout="wide")
# st.title("🧠 AI-Powered Investing News Analyzer")

# # === API Key Input ===
# st.subheader("πŸ” API Keys")
# openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
# tavily_api_key = st.text_input("Tavily API Key", type="password").strip()

# # === Topic Input ===
# st.subheader("πŸ“ˆ Topics of Interest")
# topics_data = []

# with st.form("topics_form"):
#     topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
    
#     for i in range(topic_count):
#         col1, col2 = st.columns(2)
#         with col1:
#             topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
#         with col2:
#             days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
#         topics_data.append({"topic": topic, "timespan_days": days})

#     submitted = st.form_submit_button("Run Analysis")

# # === Submission logic ===
# if submitted:
#     if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
#         st.warning("Please fill in all fields.")
#     else:
#         os.environ["OPENAI_API_KEY"] = openai_api_key
#         os.environ["TAVILY_API_KEY"] = tavily_api_key

#         df = pd.DataFrame(topics_data)
#         with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
#             df.to_csv(tmp_csv.name, index=False)
#             csv_path = tmp_csv.name

#         progress_placeholder = st.empty()
#         log_output = st.empty()
#         string_buffer = StringIO()

#         def write_log(msg):
#             print(msg)  # Will go to final log
#             progress_placeholder.markdown(f"πŸ”„ {msg}")

#         with contextlib.redirect_stdout(string_buffer):
#             write_log("πŸš€ Starting analysis...")
#             output_path = run_pipeline(csv_path, tavily_api_key)
#             write_log("βœ… Finished analysis.")

#         logs = string_buffer.getvalue()
#         progress_placeholder.empty()  # Clear ephemeral log
#         log_output.code(logs)         # Show final full log


#         if output_path and isinstance(output_path, list):
#             st.success("βœ… Analysis complete!")

#             for path in output_path:
#                 if os.path.exists(path):
#                     with open(path, 'r', encoding='utf-8') as file:
#                         html_content = file.read()
#                         filename = os.path.basename(path)

#                         st.download_button(
#                             label=f"πŸ“₯ Download {filename}",
#                             data=html_content,
#                             file_name=filename,
#                             mime="text/html"
#                         )
#                         st.components.v1.html(html_content, height=600, scrolling=True)
#         else:
#             st.error("❌ No reports were generated.")