Spaces:
Running
Running
File size: 6,167 Bytes
342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 8143a2a 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
import sys
import tempfile
import streamlit as st
import pandas as pd
from io import StringIO
# Add 'src' to Python path so we can import main.py
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
from main import run_pipeline
st.set_page_config(page_title="π° AI News Analyzer", layout="wide")
st.title("π§ AI-Powered Investing News Analyzer")
# === API Key Input ===
st.subheader("π API Keys")
openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# === Topic Input ===
st.subheader("π Topics of Interest")
topics_data = []
with st.form("topics_form"):
topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
for i in range(topic_count):
col1, col2 = st.columns(2)
with col1:
topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
with col2:
days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
topics_data.append({"topic": topic, "timespan_days": days})
submitted = st.form_submit_button("Run Analysis")
# === Submission logic ===
if submitted:
if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
st.warning("Please fill in all fields.")
else:
os.environ["OPENAI_API_KEY"] = openai_api_key
os.environ["TAVILY_API_KEY"] = tavily_api_key
df = pd.DataFrame(topics_data)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
df.to_csv(tmp_csv.name, index=False)
csv_path = tmp_csv.name
progress_box = st.empty()
def show_progress(msg):
progress_box.markdown(f"β³ {msg}")
try:
output_path = run_pipeline(csv_path, tavily_api_key, progress_callback=show_progress)
progress_box.success("β
Analysis complete!")
if output_path and isinstance(output_path, list):
for path in output_path:
if os.path.exists(path):
with open(path, 'r', encoding='utf-8') as file:
html_content = file.read()
filename = os.path.basename(path)
st.download_button(
label=f"π₯ Download {filename}",
data=html_content,
file_name=filename,
mime="text/html"
)
st.components.v1.html(html_content, height=600, scrolling=True)
else:
st.error("β No reports were generated.")
except Exception as e:
progress_box.error(f"β Error: {e}")
# import os
# import sys
# import tempfile
# import streamlit as st
# import pandas as pd
# from io import StringIO
# import contextlib
# # Add 'src' to Python path so we can import main.py
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# from main import run_pipeline
# st.set_page_config(page_title="π° AI News Analyzer", layout="wide")
# st.title("π§ AI-Powered Investing News Analyzer")
# # === API Key Input ===
# st.subheader("π API Keys")
# openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
# tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# # === Topic Input ===
# st.subheader("π Topics of Interest")
# topics_data = []
# with st.form("topics_form"):
# topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
# for i in range(topic_count):
# col1, col2 = st.columns(2)
# with col1:
# topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
# with col2:
# days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
# topics_data.append({"topic": topic, "timespan_days": days})
# submitted = st.form_submit_button("Run Analysis")
# # === Submission logic ===
# if submitted:
# if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
# st.warning("Please fill in all fields.")
# else:
# os.environ["OPENAI_API_KEY"] = openai_api_key
# os.environ["TAVILY_API_KEY"] = tavily_api_key
# df = pd.DataFrame(topics_data)
# with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
# df.to_csv(tmp_csv.name, index=False)
# csv_path = tmp_csv.name
# progress_placeholder = st.empty()
# log_output = st.empty()
# string_buffer = StringIO()
# def write_log(msg):
# print(msg) # Will go to final log
# progress_placeholder.markdown(f"π {msg}")
# with contextlib.redirect_stdout(string_buffer):
# write_log("π Starting analysis...")
# output_path = run_pipeline(csv_path, tavily_api_key)
# write_log("β
Finished analysis.")
# logs = string_buffer.getvalue()
# progress_placeholder.empty() # Clear ephemeral log
# log_output.code(logs) # Show final full log
# if output_path and isinstance(output_path, list):
# st.success("β
Analysis complete!")
# for path in output_path:
# if os.path.exists(path):
# with open(path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# filename = os.path.basename(path)
# st.download_button(
# label=f"π₯ Download {filename}",
# data=html_content,
# file_name=filename,
# mime="text/html"
# )
# st.components.v1.html(html_content, height=600, scrolling=True)
# else:
# st.error("β No reports were generated.")
|