siddhartharya commited on
Commit
1051c7d
·
verified ·
1 Parent(s): 2b22c2f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -57
app.py CHANGED
@@ -1,63 +1,47 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  ],
 
 
 
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import os
3
+ from groq import Groq
4
 
5
+ # Initialize Groq client
6
+ client = Groq(
7
+ api_key=os.environ["GROQ_API_KEY"],
8
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ def generate_email(name, project, key_benefits):
11
+ prompt = f"""
12
+ Write a professional email to {name} about the {project} project.
13
+ Highlight the following key benefits:
14
+ {key_benefits}
15
+
16
+ The email should be concise, engaging, and persuasive.
17
+ """
18
+
19
+ chat_completion = client.chat.completions.create(
20
+ messages=[
21
+ {
22
+ "role": "user",
23
+ "content": prompt,
24
+ }
25
+ ],
26
+ model="mixtral-8x7b-32768", # or another appropriate Groq model
27
+ temperature=0.7,
28
+ max_tokens=500,
29
+ )
30
+
31
+ return chat_completion.choices[0].message.content
32
+
33
+ # Create Gradio interface
34
+ iface = gr.Interface(
35
+ fn=generate_email,
36
+ inputs=[
37
+ gr.Textbox(label="Recipient Name"),
38
+ gr.Textbox(label="Project Name"),
39
+ gr.Textbox(label="Key Benefits (comma-separated)")
40
  ],
41
+ outputs=gr.Textbox(label="Generated Email"),
42
+ title="AI Email Generator",
43
+ description="Generate personalized emails using Groq LLM"
44
  )
45
 
46
+ # Launch the interface
47
+ iface.launch()