File size: 8,434 Bytes
2f50c94 b6a2224 37185e0 8d271f0 37185e0 0c3b71f 41f95b2 0707373 41f95b2 0707373 e1218a1 37185e0 22cd231 f18b18e 22cd231 0c3b71f b6a2224 0c3b71f b6a2224 e7bb3db 0c3b71f f18b18e e7bb3db f18b18e 0c3b71f e7bb3db 0c3b71f e7bb3db 8d271f0 67c2abc 8d271f0 67c2abc 8d271f0 f18b18e 8d271f0 67c2abc 8d271f0 b682b3b f18b18e b020659 b682b3b 8d271f0 f18b18e 8d271f0 bd877a9 e7bb3db 0c3b71f f18b18e e7bb3db f18b18e 0c3b71f f18b18e e7bb3db 0c3b71f e7bb3db 0c3b71f f18b18e 22cd231 f18b18e 22cd231 f18b18e 22cd231 f18b18e 22cd231 f18b18e 22cd231 f18b18e 7ea79b0 ebcf536 7ea79b0 0c3b71f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
import requests
import os
import json
class AutonomousEmailAgent:
def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
self.linkedin_url = linkedin_url
self.company_name = company_name
self.role = role
self.word_limit = word_limit
self.user_name = user_name
self.email = email
self.phone = phone
self.linkedin = linkedin
self.bio = None
self.skills = []
self.experiences = []
self.company_info = None
self.role_description = None
self.attempts = 0 # Counter for iterations
# Fetch LinkedIn data via Proxycurl
def fetch_linkedin_data(self):
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY")
if not self.linkedin_url:
print("Action: No LinkedIn URL provided, using default bio.")
self.bio = "A professional with diverse experience."
self.skills = ["Adaptable", "Hardworking"]
self.experiences = ["Worked across various industries"]
else:
print("Action: Fetching LinkedIn data via Proxycurl.")
headers = {"Authorization": f"Bearer {proxycurl_api_key}"}
url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}"
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
self.bio = data.get("summary", "No bio available")
self.skills = data.get("skills", [])
self.experiences = data.get("experiences", [])
print("LinkedIn data fetched successfully.")
else:
print("Error: Unable to fetch LinkedIn profile. Status Code:", response.status_code)
self.use_default_profile()
# Set default profile information if LinkedIn scraping fails
def use_default_profile(self):
print("Using default profile values.")
self.bio = "A professional with a versatile background and extensive experience."
self.skills = ["Leadership", "Communication", "Problem-solving"]
self.experiences = [{"title": "Project Manager"}, {"title": "Team Leader"}]
# Main loop following ReAct pattern
def run(self):
self.fetch_linkedin_data()
return self.autonomous_reasoning()
# Reason and Act via LLM: Let the LLM control reasoning and actions dynamically
def autonomous_reasoning(self):
print("Autonomous Reasoning: Letting the LLM fully reason and act on available data...")
reasoning_prompt = f"""
You are an autonomous agent responsible for generating a job application email.
Here’s the current data:
- LinkedIn profile: {self.linkedin_url}
- Company Name: {self.company_name}
- Role: {self.role}
- Candidate's Bio: {self.bio}
- Candidate's Skills: {', '.join(self.skills)}
- Candidate's Experiences: {', '.join([exp['title'] for exp in self.experiences])}
Based on this data, decide if it is sufficient to generate the email. If some information is missing or insufficient, respond with:
1. "generate_email" to proceed with the email generation using available data.
2. "fallback" to use default values.
After generating the email, reflect on whether the content aligns with the role and company and whether any improvements are needed. Respond clearly with one of the above options.
"""
return self.send_request_to_llm(reasoning_prompt)
# Send request to Groq Cloud LLM with enhanced debugging and error handling
def send_request_to_llm(self, prompt):
print("Sending request to Groq Cloud LLM...")
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
print("Error: API key not found. Please set the GROQ_API_KEY environment variable.")
return "Error: API key not found."
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": "llama-3.1-70b-versatile",
"messages": [{"role": "user", "content": prompt}]
}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data)
print(f"Status Code: {response.status_code}")
if response.status_code == 200:
try:
result = response.json()
print(f"LLM Response: {json.dumps(result, indent=2)}")
choices = result.get("choices", [])
if choices and "message" in choices[0]:
content = choices[0]["message"]["content"]
print(f"Content: {content}")
return self.act_on_llm_instructions(content)
else:
print("Error: Unrecognized format in LLM response.")
return "Error: Unrecognized response format."
except json.JSONDecodeError:
print("Error: Response from Groq Cloud LLM is not valid JSON.")
return "Error: Response is not in JSON format."
else:
print(f"Error: Unable to connect to Groq Cloud LLM. Status Code: {response.status_code}")
return "Error: Unable to generate response."
# Function to act on the LLM's structured instructions
def act_on_llm_instructions(self, reasoning_output):
print(f"LLM Instruction: {reasoning_output}")
instruction = reasoning_output.lower().strip()
if "generate_email" in instruction:
return self.generate_email()
elif "fallback" in instruction:
print("Action: Using fallback values for missing data.")
return self.generate_email()
else:
print("Error: Unrecognized instruction from LLM. Proceeding with available data.")
return self.generate_email()
# Generate email based on the collected data
def generate_email(self):
print("Generating email based on the provided and/or fallback data...")
email_content = f"""
Subject: Application for {self.role} at {self.company_name}
Dear Hiring Manager,
I am excited to apply for the {self.role} role at {self.company_name}. With a strong background in {self.bio}, I believe my skills in {', '.join(self.skills)} would make me a valuable addition to your team.
Please find my LinkedIn profile for more details: {self.linkedin}
Best regards,
{self.user_name}
Email: {self.email}
Phone: {self.phone}
LinkedIn: {self.linkedin}
"""
return email_content
# Gradio UI setup remains unchanged
def gradio_ui():
name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150)
email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)
def create_email(name, company_name, role, email, phone, linkedin_url, word_limit):
agent = AutonomousEmailAgent(linkedin_url, company_name, role, word_limit, name, email, phone, linkedin_url)
return agent.run()
demo = gr.Interface(
fn=create_email,
inputs=[name_input, company_input, role_input, email_input, phone_input, linkedin_input, word_limit_slider],
outputs=[email_output],
title="Email Writing AI Agent with ReAct",
description="Generate a professional email for a job application using LinkedIn data, company info, and role description.",
allow_flagging="never"
)
demo.launch()
if __name__ == "__main__":
gradio_ui()
|