File size: 10,046 Bytes
37185e0
 
 
4a2f000
37185e0
cdbe688
0707373
 
37185e0
0707373
41f95b2
0707373
 
 
 
41f95b2
 
 
 
0707373
 
 
 
 
37185e0
0707373
 
 
4a2f000
 
 
 
0707373
 
 
ab5ba21
 
 
 
 
0707373
ab5ba21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0707373
 
 
ab5ba21
 
 
0707373
ab5ba21
 
 
 
 
 
 
 
 
 
 
 
4a2f000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f95b2
2bd7b24
0707373
 
 
ab5ba21
4a2f000
 
0707373
 
 
 
 
 
 
 
41f95b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0707373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d82ad
0707373
 
 
 
 
4a2f000
 
 
0707373
 
 
 
2bd7b24
0707373
2bd7b24
0707373
729192c
0707373
729192c
 
 
0707373
 
12d8a5c
0707373
2bd7b24
0707373
 
41f95b2
 
0707373
 
 
2bd7b24
0707373
 
2bd7b24
0707373
 
 
2bd7b24
 
 
 
 
 
 
 
4a2f000
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
import requests
import os
from bs4 import BeautifulSoup  # Add BeautifulSoup for scraping

# Load API keys securely from environment variables
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY")  # Proxycurl API key
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY")  # Groq Cloud API key

class EmailAgent:
    def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
        self.linkedin_url = linkedin_url
        self.company_name = company_name
        self.role = role
        self.word_limit = word_limit
        self.user_name = user_name
        self.email = email
        self.phone = phone
        self.linkedin = linkedin
        self.bio = None
        self.skills = []
        self.experiences = []
        self.company_info = None
        self.role_description = None

    # Reason: Decide what information is needed
    def reason_about_data(self):
        print("Reasoning: I need LinkedIn data, company info, and role description.")
        if not self.linkedin_url:
            print("Warning: LinkedIn URL missing. Will proceed with default bio.")
        if not self.company_name:
            print("Warning: Company name missing. Will proceed with default company info.")
    
    # Action: Fetch LinkedIn data via Proxycurl
    def fetch_linkedin_data(self):
        if not self.linkedin_url:
            print("Action: No LinkedIn URL provided, using default bio.")
            self.bio = "A professional with diverse experience."
            self.skills = ["Adaptable", "Hardworking"]
            self.experiences = ["Worked across various industries"]
        else:
            print("Action: Fetching LinkedIn data from Proxycurl.")
            headers = {
                "Authorization": f"Bearer {proxycurl_api_key}",
            }
            url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}"
            response = requests.get(url, headers=headers)
            if response.status_code == 200:
                data = response.json()
                self.bio = data.get("summary", "No bio available")
                self.skills = data.get("skills", [])
                self.experiences = data.get("experiences", [])
            else:
                print("Error: Unable to fetch LinkedIn profile. Using default bio.")
                self.bio = "A professional with diverse experience."
                self.skills = ["Adaptable", "Hardworking"]
                self.experiences = ["Worked across various industries"]
    
    # Action: Fetch company information via Proxycurl
    def fetch_company_info(self):
        if not self.company_name:
            print("Action: No company name provided, using default company info.")
            self.company_info = "A leading company in its field, offering innovative solutions."
        else:
            print(f"Action: Fetching company info for {self.company_name}.")
            headers = {
                "Authorization": f"Bearer {proxycurl_api_key}",
            }
            url = f"https://nubela.co/proxycurl/api/v2/linkedin/company?company_name={self.company_name}"
            response = requests.get(url, headers=headers)
            if response.status_code == 200:
                data = response.json()
                self.company_info = data.get("description", "No detailed company info available.")
            else:
                print(f"Error: Unable to fetch company info for {self.company_name}. Using default info.")
                self.company_info = "A leading company in its field, offering innovative solutions."

    # Action: Scrape the company's website for role-specific information
    def scrape_role_from_website(self):
        print(f"Action: Scraping role description from the company's website for {self.role}.")
        if not self.company_name:
            print("Error: No company name or URL provided for scraping.")
            return False
        
        # Attempt to scrape the company's website
        try:
            response = requests.get(f"https://{self.company_name}.com/careers")
            if response.status_code == 200:
                soup = BeautifulSoup(response.text, 'html.parser')
                # Look for any sections that might contain role descriptions
                role_descriptions = soup.find_all(string=lambda text: self.role.lower() in text.lower())
                if role_descriptions:
                    # If we find relevant role descriptions, use the first match
                    self.role_description = role_descriptions[0]
                    print(f"Found role description on company's website: {self.role_description}")
                    return True
                else:
                    print(f"No specific role description found on the website for {self.role}.")
                    return False
            else:
                print(f"Error: Unable to reach company's website at {self.company_name}.com.")
                return False
        except Exception as e:
            print(f"Error during scraping: {e}")
            return False

    # Action: Use default logic to infer role description if scraping fails
    def use_default_role_description(self):
        print(f"Action: Using default logic for the role of {self.role}.")
        self.role_description = f"The role of {self.role} at {self.company_name} involves mentoring AI and technology students to develop their skills and progress their careers."

    # Reflection: Check if the data is sufficient to generate an email
    def reflect_on_data(self):
        print("Reflection: Do I have enough data to generate the email?")
        # Allow the email to be generated with default values if data is missing
        if not self.bio or not self.skills or not self.company_info:
            print("Warning: Some critical information is missing. Proceeding with default values.")
        return True
    
    # Action: Generate the email using Groq Cloud LLM
    def generate_email(self):
        print("Action: Generating the email with the gathered information.")
        prompt = f"""
        Write a professional email applying for the {self.role} position at {self.company_name}.
        The candidate’s bio is: {self.bio}.
        
        Focus on relevant skills and experiences from LinkedIn, such as {', '.join(self.skills)}, 
        that directly align with the role of {self.role}. 
        Highlight only the skills and experiences that relate to mentoring, AI, technology, and leadership.
        
        The company info is: {self.company_info}.
        The role involves: {self.role_description}.
        
        End the email with this signature:
        Best regards,
        {self.user_name}
        Email: {self.email}
        Phone: {self.phone}
        LinkedIn: {self.linkedin}
        
        The email should not exceed {self.word_limit} words.
        """
        
        url = "https://api.groq.com/openai/v1/chat/completions"
        headers = {
            "Authorization": f"Bearer {groq_api_key}",
            "Content-Type": "application/json",
        }
        
        data = {
            "messages": [{"role": "user", "content": prompt}],
            "model": "llama3-8b-8192"
        }
        
        response = requests.post(url, headers=headers, json=data)
        if response.status_code == 200:
            return response.json()["choices"][0]["message"]["content"].strip()
        else:
            print(f"Error: {response.status_code}, {response.text}")
            return "Error generating email. Please check your API key or try again later."

    # Main loop following ReAct pattern
    def run(self):
        self.reason_about_data()  # Reason
        self.fetch_linkedin_data()  # Action
        self.fetch_company_info()  # Action
        # Try to scrape the company's website for role-specific information
        if not self.scrape_role_from_website():  
            self.use_default_role_description()  # Use default logic if scraping fails
        if self.reflect_on_data():  # Reflection
            return self.generate_email()  # Final Action
        else:
            return "Error: Not enough data to generate the email."

# Define the Gradio interface and the main app logic
def gradio_ui():
    # Input fields
    name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
    company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
    role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
    email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
    phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
    linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
    word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150)  # New slider for word limit
    
    # Output field
    email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)

    # Function to create and run the email agent
    def create_email(name, company_name, role, email, phone, linkedin_url, word_limit):
        agent = EmailAgent(linkedin_url, company_name, role, word_limit, name, email, phone, linkedin_url)
        return agent.run()

    # Gradio interface
    demo = gr.Interface(
        fn=create_email,
        inputs=[name_input, company_input, role_input, email_input, phone_input, linkedin_input, word_limit_slider],
        outputs=[email_output],
        title="Email Writing AI Agent with ReAct",
        description="Generate a professional email for a job application using LinkedIn data, company info, and role description.",
        allow_flagging="never"
    )
    
    # Launch the Gradio app
    demo.launch()

# Start the Gradio app when running the script
if __name__ == "__main__":
    gradio_ui()