File size: 7,854 Bytes
37185e0 cdbe688 0707373 37185e0 0707373 41f95b2 0707373 41f95b2 0707373 37185e0 0707373 ab5ba21 0707373 ab5ba21 0707373 ab5ba21 0707373 ab5ba21 0707373 41f95b2 2bd7b24 0707373 ab5ba21 0707373 41f95b2 0707373 c3d82ad 0707373 2bd7b24 0707373 2bd7b24 0707373 729192c 0707373 729192c 0707373 12d8a5c 0707373 2bd7b24 0707373 41f95b2 0707373 2bd7b24 0707373 2bd7b24 0707373 2bd7b24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
import requests
import os
# Load API keys securely from environment variables
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") # Proxycurl API key
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY") # Groq Cloud API key
class EmailAgent:
def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
self.linkedin_url = linkedin_url
self.company_name = company_name
self.role = role
self.word_limit = word_limit
self.user_name = user_name
self.email = email
self.phone = phone
self.linkedin = linkedin
self.bio = None
self.skills = []
self.experiences = []
self.company_info = None
self.role_description = None
# Reason: Decide what information is needed
def reason_about_data(self):
print("Reasoning: I need LinkedIn data, company info, and role description.")
# Action: Fetch LinkedIn data via Proxycurl
def fetch_linkedin_data(self):
if not self.linkedin_url:
print("Action: No LinkedIn URL provided, using default bio.")
self.bio = "A professional with diverse experience."
self.skills = ["Adaptable", "Hardworking"]
self.experiences = ["Worked across various industries"]
else:
print("Action: Fetching LinkedIn data from Proxycurl.")
headers = {
"Authorization": f"Bearer {proxycurl_api_key}",
}
url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}"
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
self.bio = data.get("summary", "No bio available")
self.skills = data.get("skills", [])
self.experiences = data.get("experiences", [])
else:
print("Error: Unable to fetch LinkedIn profile. Using default bio.")
self.bio = "A professional with diverse experience."
self.skills = ["Adaptable", "Hardworking"]
self.experiences = ["Worked across various industries"]
# Action: Fetch company information via Proxycurl
def fetch_company_info(self):
if not self.company_name:
print("Action: No company name provided, using default company info.")
self.company_info = "A leading company in its field, offering innovative solutions."
else:
print(f"Action: Fetching company info for {self.company_name}.")
headers = {
"Authorization": f"Bearer {proxycurl_api_key}",
}
url = f"https://nubela.co/proxycurl/api/v2/linkedin/company?company_name={self.company_name}"
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
self.company_info = data.get("description", "No detailed company info available.")
else:
print(f"Error: Unable to fetch company info for {self.company_name}. Using default info.")
self.company_info = "A leading company in its field, offering innovative solutions."
# Action: Fetch role description
def fetch_role_description(self):
print(f"Action: Fetching role description for {self.role}.")
self.role_description = f"The role of {self.role} at {self.company_name} involves mentoring AI and technology students to develop their skills and progress their careers."
# Reflection: Check if the data is sufficient to generate an email
def reflect_on_data(self):
print("Reflection: Do I have enough data to generate the email?")
# Allow the email to be generated with default values if data is missing
return True
# Action: Generate the email using Groq Cloud LLM
def generate_email(self):
print("Action: Generating the email with the gathered information.")
prompt = f"""
Write a professional email applying for the {self.role} position at {self.company_name}.
The candidate’s bio is: {self.bio}.
Focus on relevant skills and experiences from LinkedIn, such as {', '.join(self.skills)},
that directly align with the role of {self.role}.
Highlight only the skills and experiences that relate to mentoring, AI, technology, and leadership.
The company info is: {self.company_info}.
The role involves: {self.role_description}.
End the email with this signature:
Best regards,
{self.user_name}
Email: {self.email}
Phone: {self.phone}
LinkedIn: {self.linkedin}
The email should not exceed {self.word_limit} words.
"""
url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Authorization": f"Bearer {groq_api_key}",
"Content-Type": "application/json",
}
data = {
"messages": [{"role": "user", "content": prompt}],
"model": "llama3-8b-8192"
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"].strip()
else:
print(f"Error: {response.status_code}, {response.text}")
return "Error generating email. Please check your API key or try again later."
# Main loop following ReAct pattern
def run(self):
self.reason_about_data() # Reason
self.fetch_linkedin_data() # Action
self.fetch_company_info() # Action
self.fetch_role_description() # Action
if self.reflect_on_data(): # Reflection
return self.generate_email() # Final Action
else:
return "Error: Not enough data to generate the email."
# Define the Gradio interface and the main app logic
def gradio_ui():
# Input fields
name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150) # New slider for word limit
# Output field
email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)
# Function to create and run the email agent
def create_email(name, company_name, role, email, phone, linkedin_url, word_limit):
agent = EmailAgent(linkedin_url, company_name, role, word_limit, name, email, phone, linkedin_url)
return agent.run()
# Gradio interface
demo = gr.Interface(
fn=create_email,
inputs=[name_input, company_input, role_input, email_input, phone_input, linkedin_input, word_limit_slider],
outputs=[email_output],
title="Email Writing AI Agent with ReAct",
description="Generate a professional email for a job application using LinkedIn data, company info, and role description.",
allow_flagging="never"
)
# Launch the Gradio app
demo.launch()
# Start the Gradio app when running the script
if __name__ == "__main__":
gradio_ui()
|