File size: 9,478 Bytes
2f50c94
b6a2224
37185e0
8d271f0
37185e0
0c3b71f
41f95b2
0707373
 
 
 
41f95b2
 
 
 
0707373
 
 
 
 
e1218a1
11d6883
37185e0
22cd231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f18b18e
 
 
 
 
 
 
 
 
 
 
 
22cd231
0c3b71f
 
b6a2224
 
c4aa364
 
 
 
 
e7bb3db
0c3b71f
 
 
 
 
 
f18b18e
83c06a2
0c3b71f
e7bb3db
8d271f0
 
 
 
 
67c2abc
 
 
 
8d271f0
 
 
 
 
f18b18e
8d271f0
 
 
 
67c2abc
8d271f0
b682b3b
f18b18e
 
b020659
 
 
 
11d6883
b020659
 
 
b682b3b
 
 
8d271f0
f18b18e
8d271f0
bd877a9
11d6883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d837646
83c06a2
 
f7c45b5
83c06a2
 
63c1516
 
 
 
83c06a2
f7c45b5
 
 
 
 
 
 
83c06a2
 
 
 
 
 
 
 
 
63c1516
83c06a2
 
 
f7c45b5
22cd231
11d6883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f18b18e
7ea79b0
 
 
 
 
 
 
ebcf536
7ea79b0
 
 
0c3b71f
 
 
 
 
 
 
 
 
11d6883
0c3b71f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
import requests
import os
import json

class AutonomousEmailAgent:
    def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
        self.linkedin_url = linkedin_url
        self.company_name = company_name
        self.role = role
        self.word_limit = word_limit
        self.user_name = user_name
        self.email = email
        self.phone = phone
        self.linkedin = linkedin
        self.bio = None
        self.skills = []
        self.experiences = []
        self.company_info = None
        self.role_description = None
        self.attempts = 0  # Counter for iterations
        self.max_attempts = 5  # Set maximum number of iterations

    def fetch_linkedin_data(self):
        proxycurl_api_key = os.getenv("PROXYCURL_API_KEY")
        if not self.linkedin_url:
            print("Action: No LinkedIn URL provided, using default bio.")
            self.bio = "A professional with diverse experience."
            self.skills = ["Adaptable", "Hardworking"]
            self.experiences = ["Worked across various industries"]
        else:
            print("Action: Fetching LinkedIn data via Proxycurl.")
            headers = {"Authorization": f"Bearer {proxycurl_api_key}"}
            url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}"
            response = requests.get(url, headers=headers)
            if response.status_code == 200:
                data = response.json()
                self.bio = data.get("summary", "No bio available")
                self.skills = data.get("skills", [])
                self.experiences = data.get("experiences", [])
                print("LinkedIn data fetched successfully.")
            else:
                print("Error: Unable to fetch LinkedIn profile. Status Code:", response.status_code)
                self.use_default_profile()

    def use_default_profile(self):
        print("Using default profile values.")
        self.bio = "A professional with a versatile background and extensive experience."
        self.skills = ["Leadership", "Communication", "Problem-solving"]
        self.experiences = [{"title": "Project Manager"}, {"title": "Team Leader"}]

    def run(self):
        self.fetch_linkedin_data()
        return self.autonomous_reasoning()

    def autonomous_reasoning(self):
        print("Autonomous Reasoning: Letting the LLM fully reason and act on available data...")
        
        reasoning_prompt = f"""
        You are an AI agent tasked with generating a job application email using Simon Sinek's Start with Why model. 
        The email must begin with why the candidate is passionate about the role, then explain how their skills and 
        experience align with the company and role, and finally describe specific achievements that demonstrate their 
        capabilities.

        Here’s the current data:
        - LinkedIn profile: {self.linkedin_url}
        - Company Name: {self.company_name}
        - Role: {self.role}
        - Candidate's Bio: {self.bio}
        - Candidate's Skills: {', '.join(self.skills)}
        - Candidate's Experiences: {', '.join([exp['title'] for exp in self.experiences])}

        Generate the email using this structure and ensure it is within {self.word_limit} words.
        """
        
        return self.send_request_to_llm(reasoning_prompt)

    def send_request_to_llm(self, prompt):
        print("Sending request to Groq Cloud LLM...")
        api_key = os.getenv("GROQ_API_KEY")
        if not api_key:
            print("Error: API key not found. Please set the GROQ_API_KEY environment variable.")
            return "Error: API key not found."
        
        headers = {
            "Authorization": f"Bearer {api_key}",
            "Content-Type": "application/json"
        }
        data = {
            "model": "llama-3.1-70b-versatile",
            "messages": [{"role": "user", "content": prompt}]
        }
        response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data)
        
        print(f"Status Code: {response.status_code}")
        if response.status_code == 200:
            try:
                result = response.json()
                print(f"LLM Response: {json.dumps(result, indent=2)}")
                choices = result.get("choices", [])
                if choices and "message" in choices[0]:
                    content = choices[0]["message"]["content"]
                    print(f"Content: {content}")
                    return self.act_on_llm_instructions(content)
                else:
                    print("Error: Unrecognized format in LLM response.")
                    return "Error: Unrecognized response format."
            except json.JSONDecodeError:
                print("Error: Response from Groq Cloud LLM is not valid JSON.")
                return "Error: Response is not in JSON format."
        else:
            print(f"Error: Unable to connect to Groq Cloud LLM. Status Code: {response.status_code}")
            return "Error: Unable to generate response."

    def act_on_llm_instructions(self, llm_response):
        if self.attempts >= self.max_attempts:
            print("Max attempts reached. Proceeding with fallback option.")
            return self.generate_fallback_email()

        print(f"LLM Instruction: {llm_response}")
        if "scrape" in llm_response.lower():
            self.attempts += 1
            print(f"Scraping attempt {self.attempts}...")
            return self.autonomous_reasoning()
        elif "generate_email" in llm_response.lower():
            return self.format_email(llm_response)
        elif "fallback" in llm_response.lower():
            return self.generate_fallback_email()
        else:
            print("Error: Unrecognized instruction from LLM. Proceeding with available data.")
            self.attempts += 1
            return self.autonomous_reasoning()

    def format_email(self, llm_response):
        # Clean and format the email
        lines = [line.strip() for line in llm_response.split("\n") if line.strip()]
        formatted_email = "\n\n".join(lines)

        # Truncate the email if it exceeds the word limit
        words = formatted_email.split()
        if len(words) > self.word_limit:
            truncated_email = " ".join(words[:self.word_limit]) + "..."
            formatted_email = truncated_email

        # Add the closing section with a call to action
        closing_section = (
            "\n\nI would appreciate the opportunity to discuss how my background, skills, and passion align with the goals "
            "of 100xEngineers. I am eager to contribute to your mission and support the development of future leaders in technology.\n\n"
            "Thank you for considering my application. I look forward to the possibility of discussing this role further.\n"
        )

        # Prepare the signature
        signature = (
            f"Best regards,\n"
            f"{self.user_name}\n"
            f"Email: {self.email}\n"
            f"Phone: {self.phone}\n"
            f"LinkedIn: {self.linkedin}"
        )

        # Ensure only one "Best regards" section and remove any duplicate signatures
        if "Best regards" in formatted_email:
            formatted_email = formatted_email.split("Best regards")[0].strip()

        return f"{formatted_email}{closing_section}\n{signature}"

    def generate_fallback_email(self):
        # Generate a basic email if max attempts are reached
        return f"""Subject: Application for {self.role} at {self.company_name}

Dear Hiring Manager,

I am excited to apply for the {self.role} position at {self.company_name}. My experience and skills align with the role's requirements, and I am confident in my ability to contribute positively.

Best regards,
{self.user_name}
Email: {self.email}
Phone: {self.phone}
LinkedIn: {self.linkedin}
"""

# Gradio UI setup remains unchanged
def gradio_ui():
    name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
    company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
    role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
    email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
    phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
    linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
    word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150)
    
    email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)

    def create_email(name, company_name, role, email, phone, linkedin_url, word_limit):
        agent = AutonomousEmailAgent(linkedin_url, company_name, role, word_limit, name, email, phone, linkedin_url)
        return agent.run()

    demo = gr.Interface(
        fn=create_email,
        inputs=[name_input, company_input, role_input, email_input, phone_input, linkedin_input, word_limit_slider],
        outputs=[email_output],
        title="Email Writing AI Agent with ReAct",
        description="Generates a job application email using dynamic and adaptive reasoning."
    )
    demo.launch()

if __name__ == "__main__":
    gradio_ui()