siddhartharya commited on
Commit
b6a2224
·
verified ·
1 Parent(s): 2f50c94

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -23
app.py CHANGED
@@ -1,5 +1,5 @@
1
- import requests
2
  import gradio as gr
 
3
  import os
4
 
5
  # Load API keys securely from environment variables
@@ -23,15 +23,57 @@ class EmailAgent:
23
  self.company_info = None
24
  self.role_description = None
25
 
26
- # Reason: Decide what information is needed
27
- def reason_about_data(self):
28
- print("Reasoning: Deciding what data we need...")
29
- if not self.linkedin_url:
30
- print("Warning: LinkedIn URL missing. Proceeding with default bio.")
31
- if not self.company_name:
32
- print("Warning: Company name missing. Proceeding with default company info.")
33
- if not self.role:
34
- print("Warning: Role missing. We will use general logic for the role.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  # Action: Fetch LinkedIn data via Proxycurl (acting based on reasoning)
37
  def fetch_linkedin_data(self):
@@ -79,13 +121,6 @@ class EmailAgent:
79
  print(f"Error: Unable to fetch company info via Firecrawl. Using default info.")
80
  self.company_info = "A leading company in its field."
81
 
82
- # Reflection: Check if we have enough data to generate the email
83
- def reflect_on_data(self):
84
- print("Reflection: Do we have enough data?")
85
- if not self.bio or not self.skills or not self.company_info:
86
- print("Warning: Some critical information is missing. Proceeding with default values.")
87
- return True
88
-
89
  # Final Action: Generate the email using Groq Cloud LLM based on gathered data
90
  def generate_email(self):
91
  print("Action: Generating the email with the gathered information.")
@@ -133,14 +168,13 @@ class EmailAgent:
133
 
134
  # Main loop following ReAct pattern
135
  def run(self):
136
- self.reason_about_data() # Reasoning step
 
 
137
  self.fetch_linkedin_data() # Fetch LinkedIn data
138
  self.fetch_company_info_with_firecrawl() # Fetch company data using Firecrawl
139
- # Reflect on whether the data is sufficient
140
- if self.reflect_on_data():
141
- return self.generate_email() # Final action: generate email
142
- else:
143
- return "Error: Not enough data to generate the email."
144
 
145
  # Define the Gradio interface and the main app logic
146
  def gradio_ui():
 
 
1
  import gradio as gr
2
+ import requests
3
  import os
4
 
5
  # Load API keys securely from environment variables
 
23
  self.company_info = None
24
  self.role_description = None
25
 
26
+ # Use the LLM to reason and reflect on the provided data
27
+ def reason_with_llm(self):
28
+ print("Reasoning: Using LLM to reason about available data...")
29
+
30
+ # LLM reasoning prompt that evaluates the current data and reflects on next actions
31
+ reasoning_prompt = f"""
32
+ You are a reasoning agent tasked with generating a job application email. Here's what we have:
33
+
34
+ 1. Candidate's LinkedIn profile URL: {self.linkedin_url}
35
+ 2. Company Name: {self.company_name}
36
+ 3. Role: {self.role}
37
+ 4. Word Limit: {self.word_limit}
38
+ 5. Candidate's Name: {self.user_name}
39
+ 6. Candidate's Email: {self.email}
40
+ 7. Candidate's Phone: {self.phone}
41
+ 8. Candidate's LinkedIn: {self.linkedin}
42
+
43
+ Candidate's Bio: {self.bio}
44
+ Candidate's Skills: {', '.join(self.skills)}
45
+ Candidate's Experiences: {', '.join([exp['title'] for exp in self.experiences])}
46
+
47
+ Company Information: {self.company_info}
48
+ Role Description: {self.role_description}
49
+
50
+ Evaluate the completeness of the data. If some key data is missing, determine whether we should:
51
+ - Scrape for more data (e.g., company info, role descriptions).
52
+ - Proceed with the available information and generate the email using default logic.
53
+
54
+ Reflect on whether we need more data or if the current information is sufficient to proceed.
55
+ """
56
+
57
+ # Send this reasoning prompt to the LLM
58
+ url = "https://api.groq.com/openai/v1/chat/completions"
59
+ headers = {
60
+ "Authorization": f"Bearer {groq_api_key}",
61
+ "Content-Type": "application/json",
62
+ }
63
+
64
+ data = {
65
+ "messages": [{"role": "user", "content": reasoning_prompt}],
66
+ "model": "llama3-8b-8192"
67
+ }
68
+
69
+ response = requests.post(url, headers=headers, json=data)
70
+ if response.status_code == 200:
71
+ reasoning_output = response.json()["choices"][0]["message"]["content"].strip()
72
+ print("LLM Reasoning Output:", reasoning_output)
73
+ return reasoning_output
74
+ else:
75
+ print(f"Error: {response.status_code}, {response.text}")
76
+ return "Error: Unable to complete reasoning."
77
 
78
  # Action: Fetch LinkedIn data via Proxycurl (acting based on reasoning)
79
  def fetch_linkedin_data(self):
 
121
  print(f"Error: Unable to fetch company info via Firecrawl. Using default info.")
122
  self.company_info = "A leading company in its field."
123
 
 
 
 
 
 
 
 
124
  # Final Action: Generate the email using Groq Cloud LLM based on gathered data
125
  def generate_email(self):
126
  print("Action: Generating the email with the gathered information.")
 
168
 
169
  # Main loop following ReAct pattern
170
  def run(self):
171
+ reasoning_output = self.reason_with_llm() # LLM performs reasoning and reflection
172
+ print("LLM Reflection:", reasoning_output)
173
+
174
  self.fetch_linkedin_data() # Fetch LinkedIn data
175
  self.fetch_company_info_with_firecrawl() # Fetch company data using Firecrawl
176
+
177
+ return self.generate_email() # Final action: generate email
 
 
 
178
 
179
  # Define the Gradio interface and the main app logic
180
  def gradio_ui():