Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
import os | |
from datetime import datetime # Import datetime for date validation | |
# Load API keys securely from environment variables | |
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") # Add your Proxycurl API key to your environment variables | |
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY") | |
# Function to use Proxycurl API to get the LinkedIn profile data | |
def get_linkedin_profile_via_proxycurl(linkedin_profile_url): | |
headers = { | |
"Authorization": f"Bearer {proxycurl_api_key}", | |
} | |
url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={linkedin_profile_url}" | |
response = requests.get(url, headers=headers) | |
if response.status_code == 200: | |
data = response.json() | |
bio = data.get("summary", "No bio available") | |
return bio | |
else: | |
return "Error: Unable to fetch LinkedIn profile" | |
# Helper function to call Groq Cloud LLM API to generate and correct the email | |
def generate_and_correct_email(bio, company_name, role): | |
url = "https://api.groq.com/openai/v1/chat/completions" # Updated API URL for Groq Cloud | |
headers = { | |
"Authorization": f"Bearer {groq_api_key}", # Use the API key securely from environment | |
"Content-Type": "application/json", | |
} | |
# Updated prompt to focus on mapping skills to job requirements and suitability | |
prompt = f""" | |
Write a professional email applying for the {role} position at {company_name}. | |
Use this bio: {bio}. | |
The email should focus on how the candidate's skills and experience align with the job requirements, | |
highlighting why they are a great fit for the role. | |
Avoid overly bragging about accomplishments and focus more on how the candidate can meet the company's needs. | |
Structure the email as follows: | |
- Introduction | |
- Skills and experience directly related to the job requirements | |
- Why the candidate is the most suitable person for the role | |
- Conclusion | |
""" | |
# Construct the data payload for the API request | |
data = { | |
"messages": [ | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
], | |
"model": "llama3-8b-8192" # Use the appropriate model from Groq Cloud | |
} | |
response = requests.post(url, headers=headers, json=data) | |
if response.status_code == 200: | |
# Extract the generated email content from the API response | |
return response.json()["choices"][0]["message"]["content"].strip() | |
else: | |
# Print or log the error for debugging | |
print(f"Error: {response.status_code}, {response.text}") | |
return "Error generating email. Please check your API key or try again later." | |
# Function to validate the DOB format (DD-MM-YYYY) | |
def validate_dob(dob): | |
try: | |
# Attempt to parse the DOB to the expected format | |
datetime.strptime(dob, "%d-%m-%Y") | |
return True | |
except ValueError: | |
# Return False if the format is invalid | |
return False | |
# Main function to create the email and allow for saving, editing, or copying | |
def create_email(name, dob, city, company_name, role, email, phone, linkedin_profile_url): | |
# Validate the DOB format (DD-MM-YYYY) | |
if not validate_dob(dob): | |
return "Invalid Date of Birth format. Please use DD-MM-YYYY." | |
# Step 1: Fetch LinkedIn profile using Proxycurl API if LinkedIn URL is provided | |
if linkedin_profile_url: | |
bio = get_linkedin_profile_via_proxycurl(linkedin_profile_url) | |
else: | |
bio = f"{name} is a professional in {city}." # Default bio if no LinkedIn URL is provided | |
# Step 2: Generate the email using Groq Cloud LLM | |
generated_email = generate_and_correct_email(bio, company_name, role) | |
# Step 3: Add the user's email, phone number, and LinkedIn profile to the signature | |
signature = f"\n\nBest regards,\n{name}\nEmail: {email}\nPhone: {phone}\nLinkedIn: {linkedin_profile_url if linkedin_profile_url else 'Not provided'}" | |
# Ensure the body doesn't include any redundant 'Best regards' and just append our signature | |
if "Best regards" in generated_email: | |
generated_email = generated_email.split("Best regards")[0].strip() | |
# Return the final polished email with the signature | |
return generated_email + signature | |
# Define interface with Gradio | |
def gradio_ui(): | |
# Define inputs | |
name_input = gr.Textbox(label="Name", placeholder="Enter your name") | |
dob_input = gr.Textbox(label="Date of Birth", placeholder="Enter your date of birth (DD-MM-YYYY)") | |
city_input = gr.Textbox(label="City", placeholder="Enter your city of residence") | |
company_name_input = gr.Textbox(label="Company Name", placeholder="Enter the name of the company you are applying to") | |
role_input = gr.Textbox(label="Role", placeholder="Enter the role you are applying for") | |
email_input = gr.Textbox(label="Email Address", placeholder="Enter your email address") | |
phone_input = gr.Textbox(label="Phone Number", placeholder="Enter your phone number") | |
linkedin_input = gr.Textbox(label="LinkedIn URL", placeholder="Enter your LinkedIn profile URL") # New field for LinkedIn URL | |
# Define output for the generated email | |
email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10) | |
# Create the Gradio interface | |
demo = gr.Interface( | |
fn=create_email, # Function to call when the user submits | |
inputs=[name_input, dob_input, city_input, company_name_input, role_input, email_input, phone_input, linkedin_input], | |
outputs=[email_output], | |
title="Email Writing AI Agent", | |
description="Generate a professional email for a job application by providing your basic info.", | |
allow_flagging="never" # Disable flagging | |
) | |
# Launch the Gradio app | |
demo.launch() | |
# Start the Gradio app when running the script | |
if __name__ == "__main__": | |
gradio_ui() | |