|
import gradio as gr |
|
import requests |
|
import os |
|
|
|
|
|
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") |
|
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY") |
|
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY") |
|
|
|
class AutonomousEmailAgent: |
|
def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin): |
|
self.linkedin_url = linkedin_url |
|
self.company_name = company_name |
|
self.role = role |
|
self.word_limit = word_limit |
|
self.user_name = user_name |
|
self.email = email |
|
self.phone = phone |
|
self.linkedin = linkedin |
|
self.bio = None |
|
self.skills = [] |
|
self.experiences = [] |
|
self.company_info = None |
|
self.role_description = None |
|
|
|
|
|
def autonomous_reasoning(self): |
|
print("Autonomous Reasoning: Letting the LLM fully reason and act on available data...") |
|
|
|
|
|
reasoning_prompt = f""" |
|
You are an autonomous agent responsible for generating a job application email. |
|
|
|
Here's the current data: |
|
|
|
- LinkedIn profile: {self.linkedin_url} |
|
- Company Name: {self.company_name} |
|
- Role: {self.role} |
|
- Candidate's Bio: {self.bio} |
|
- Candidate's Skills: {', '.join(self.skills)} |
|
- Candidate's Experiences: {', '.join([exp['title'] for exp in self.experiences])} |
|
- Company Information: {self.company_info} |
|
- Role Description: {self.role_description} |
|
|
|
Based on this data, decide if it is sufficient to generate the email. If some information is missing or insufficient: |
|
- Decide whether to scrape the company's website for more information or use a fallback. |
|
- If the scraping fails, decide what next steps to take. |
|
|
|
Once the information is complete, proceed to generate the email. After generating the email, reflect on whether the content aligns with the role and company and whether any improvements are needed. |
|
""" |
|
|
|
|
|
url = "https://api.groq.com/openai/v1/chat/completions" |
|
headers = { |
|
"Authorization": f"Bearer {groq_api_key}", |
|
"Content-Type": "application/json", |
|
} |
|
|
|
data = { |
|
"messages": [{"role": "user", "content": reasoning_prompt}], |
|
"model": "llama3-8b-8192" |
|
} |
|
|
|
response = requests.post(url, headers=headers, json=data) |
|
if response.status_code == 200: |
|
reasoning_output = response.json()["choices"][0]["message"]["content"].strip() |
|
print("LLM Reasoning Output:", reasoning_output) |
|
|
|
|
|
return self.act_on_llm_instructions(reasoning_output) |
|
else: |
|
print(f"Error: {response.status_code}, {response.text}") |
|
return "Error: Unable to complete reasoning." |
|
|
|
|
|
def act_on_llm_instructions(self, reasoning_output): |
|
|
|
if "scrape the company's website" in reasoning_output: |
|
|
|
self.fetch_company_info_with_firecrawl() |
|
|
|
return self.autonomous_reasoning() |
|
|
|
elif "generate the email" in reasoning_output: |
|
|
|
return self.generate_email() |
|
|
|
else: |
|
return "Error: Unrecognized instruction from LLM." |
|
|
|
|
|
def fetch_linkedin_data(self): |
|
if not self.linkedin_url: |
|
print("Action: No LinkedIn URL provided, using default bio.") |
|
self.bio = "A professional with diverse experience." |
|
self.skills = ["Adaptable", "Hardworking"] |
|
self.experiences = ["Worked across various industries"] |
|
else: |
|
print("Action: Fetching LinkedIn data via Proxycurl.") |
|
headers = {"Authorization": f"Bearer {proxycurl_api_key}"} |
|
url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}" |
|
response = requests.get(url, headers=headers) |
|
if response.status_code == 200: |
|
data = response.json() |
|
self.bio = data.get("summary", "No bio available") |
|
self.skills = data.get("skills", []) |
|
self.experiences = data.get("experiences", []) |
|
else: |
|
print("Error: Unable to fetch LinkedIn profile. Using default bio.") |
|
self.bio = "A professional with diverse experience." |
|
self.skills = ["Adaptable", "Hardworking"] |
|
self.experiences = ["Worked across various industries"] |
|
|
|
|
|
def fetch_company_info_with_firecrawl(self): |
|
if not self.company_name: |
|
print("Action: No company name provided, using default company info.") |
|
self.company_info = "A leading company in its field." |
|
else: |
|
print(f"Action: Fetching company info for {self.company_name} using Firecrawl.") |
|
headers = {"Authorization": f"Bearer {firecrawl_api_key}"} |
|
firecrawl_url = "https://api.firecrawl.dev/v1/scrape" |
|
data = { |
|
"url": f"https://{self.company_name}.com", |
|
"patterns": ["description", "about", "careers", "company overview"] |
|
} |
|
|
|
response = requests.post(firecrawl_url, json=data, headers=headers) |
|
if response.status_code == 200: |
|
firecrawl_data = response.json() |
|
self.company_info = firecrawl_data.get("description", "No detailed company info available.") |
|
print(f"Company info fetched: {self.company_info}") |
|
else: |
|
print(f"Error: Unable to fetch company info via Firecrawl. Using default info.") |
|
self.company_info = "A leading company in its field." |
|
|
|
|
|
def generate_email(self): |
|
print("Action: Generating the email with the gathered information.") |
|
|
|
linkedin_text = f"Please find my LinkedIn profile at {self.linkedin}" if self.linkedin else "" |
|
|
|
|
|
prompt = f""" |
|
Write a professional email applying for the {self.role} position at {self.company_name}. |
|
|
|
Use the following information: |
|
- The candidate’s LinkedIn bio: {self.bio}. |
|
- The candidate’s most relevant skills: {', '.join(self.skills)}. |
|
- The candidate’s professional experience: {', '.join([exp['title'] for exp in self.experiences])}. |
|
|
|
Please research the company's public information. If no company-specific information is available, use general knowledge about the company's industry. |
|
|
|
Tailor the email dynamically to the role of **{self.role}** at {self.company_name}, aligning the candidate's skills and experiences with the expected responsibilities of the role and the company’s operations. |
|
|
|
{linkedin_text} |
|
|
|
Remove references to job posting sources unless provided. Use the LinkedIn URL for the candidate and do not include placeholders. |
|
|
|
End the email with this signature: |
|
Best regards, |
|
{self.user_name} |
|
Email: {self.email} |
|
Phone: {self.phone} |
|
LinkedIn: {self.linkedin} |
|
|
|
The email should not exceed {self.word_limit} words. |
|
""" |
|
|
|
url = "https://api.groq.com/openai/v1/chat/completions" |
|
headers = { |
|
"Authorization": f"Bearer {groq_api_key}", |
|
"Content-Type": "application/json", |
|
} |
|
|
|
data = { |
|
"messages": [{"role": "user", "content": prompt}], |
|
"model": "llama3-8b-8192" |
|
} |
|
|
|
response = requests.post(url, headers=headers, json=data) |
|
if response.status_code == 200: |
|
return response.json()["choices"][0]["message"]["content"].strip() |
|
else: |
|
print(f"Error: {response.status_code}, {response.text}") |
|
return "Error generating email. Please check your API key or try again later." |
|
|
|
|
|
def run(self): |
|
self.fetch_linkedin_data() |
|
|
|
return self.autonomous_reasoning() |
|
|
|
|
|
def gradio_ui(): |
|
|
|
name_input = gr.Textbox(label="Your Name", placeholder="Enter your name") |
|
company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL") |
|
role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for") |
|
email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address") |
|
phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number") |
|
linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL") |
|
word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150) |
|
|
|
|
|
email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10) |
|
|
|
|
|
def create_email(name, company_name, role, email, phone, linkedin_url, word_limit): |
|
agent = AutonomousEmailAgent(linkedin_url, company_name, role, word_limit, name, email, phone, linkedin_url) |
|
return agent.run() |
|
|
|
|
|
demo = gr.Interface( |
|
fn=create_email, |
|
inputs=[name_input, company_input, role_input, email_input, phone_input, linkedin_input, word_limit_slider], |
|
outputs=[email_output], |
|
title="Email Writing AI Agent with ReAct", |
|
description="Generate a professional email for a job application using LinkedIn data, company info, and role description.", |
|
allow_flagging="never" |
|
) |
|
|
|
|
|
demo.launch() |
|
|
|
|
|
if __name__ == "__main__": |
|
gradio_ui() |
|
|