siddhartharya's picture
Update app.py
0724750 verified
raw
history blame
6.73 kB
import gradio as gr
import requests
import os
# Load API keys securely from environment variables
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") # Add your Proxycurl API key to your environment variables
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY")
serpapi_key = os.getenv("SERPAPI_API_KEY") # Add your SerpAPI key to your environment variables
# Function to use Proxycurl API to get the LinkedIn profile data
def get_linkedin_profile_via_proxycurl(linkedin_profile_url):
headers = {
"Authorization": f"Bearer {proxycurl_api_key}",
}
url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={linkedin_profile_url}"
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
bio = data.get("summary", "No bio available")
return bio
else:
return "Error: Unable to fetch LinkedIn profile"
# Function to use SerpAPI to fetch company and role information
def get_company_and_role_info(company_name, role):
query = f"{company_name} {role} job description"
url = f"https://serpapi.com/search.json?engine=google&q={query}&api_key={serpapi_key}"
response = requests.get(url)
if response.status_code == 200:
results = response.json()
# Extract information about the company and role from the search results
company_info = []
for result in results.get("organic_results", []):
if "linkedin.com" not in result.get("link", ""):
company_info.append(result.get("snippet", ""))
return "\n".join(company_info[:2]) # Limit to 2 top results
else:
return "Error fetching company and role information."
# Helper function to call Groq Cloud LLM API to generate and correct the email
def generate_and_correct_email(bio, company_name, role, company_info):
url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Authorization": f"Bearer {groq_api_key}",
"Content-Type": "application/json",
}
# Updated prompt with a focus on professionalism, relevance, and creativity
prompt = f"""
Write a professional, concise, and compelling email applying for the {role} position at {company_name}.
Use this bio to highlight the candidate's skills and experience: {bio}.
Additionally, here is some information about the company and the role:
{company_info}
The email should:
- Be professional, creative, and tailored to the company and role.
- Creatively emphasize the candidate’s key skills and experience, aligning them with the job's requirements.
- Attract the company's attention by focusing on how the candidate's background can bring value to the role and company.
- Be concise but engaging, leaving a strong impression on the recruiter.
- Include a clear call to action, encouraging the company to interview the candidate.
Structure the email as follows:
1. **Introduction**: Briefly introduce the candidate and the role they are applying for.
2. **Skills & Experience**: Creatively map the candidate’s skills and experience to the job's key requirements, focusing on relevance.
3. **Value Proposition**: Highlight how the candidate’s experience will contribute to the company's success.
4. **Call to Action**: Encourage the company to set up an interview to explore how the candidate can add value.
"""
# Construct the data payload for the API request
data = {
"messages": [
{
"role": "user",
"content": prompt
}
],
"model": "llama3-8b-8192"
}
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"].strip()
else:
print(f"Error: {response.status_code}, {response.text}")
return "Error generating email. Please check your API key or try again later."
# Main function to create the email and allow for saving, editing, or copying
def create_email(name, company_name, role, email, phone, linkedin_profile_url):
# Step 1: Fetch LinkedIn profile using Proxycurl API if LinkedIn URL is provided
if linkedin_profile_url:
bio = get_linkedin_profile_via_proxycurl(linkedin_profile_url)
else:
bio = f"{name} is a professional."
# Step 2: Fetch company and role information using SerpAPI
company_info = get_company_and_role_info(company_name, role)
# Step 3: Generate the email using Groq Cloud LLM
generated_email = generate_and_correct_email(bio, company_name, role, company_info)
# Step 4: Add the user's email, phone number, and LinkedIn profile to the signature
signature = f"\n\nBest regards,\n{name}\nEmail: {email}\nPhone: {phone}\nLinkedIn: {linkedin_profile_url if linkedin_profile_url else 'Not provided'}"
# Ensure the body doesn't include any redundant 'Best regards' and just append our signature
if "Best regards" in generated_email:
generated_email = generated_email.split("Best regards")[0].strip()
# Return the final polished email with the signature
return generated_email + signature
# Define interface with Gradio
def gradio_ui():
# Define inputs
name_input = gr.Textbox(label="Name", placeholder="Enter your name")
company_name_input = gr.Textbox(label="Company Name", placeholder="Enter the name of the company you are applying to")
role_input = gr.Textbox(label="Role", placeholder="Enter the role you are applying for")
email_input = gr.Textbox(label="Email Address", placeholder="Enter your email address")
phone_input = gr.Textbox(label="Phone Number", placeholder="Enter your phone number")
linkedin_input = gr.Textbox(label="LinkedIn URL", placeholder="Enter your LinkedIn profile URL") # New field for LinkedIn URL
# Define output for the generated email
email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)
# Create the Gradio interface
demo = gr.Interface(
fn=create_email, # Function to call when the user submits
inputs=[name_input, company_name_input, role_input, email_input, phone_input, linkedin_input],
outputs=[email_output],
title="Email Writing AI Agent",
description="Generate a professional email for a job application by providing your basic info.",
allow_flagging="never" # Disable flagging
)
# Launch the Gradio app
demo.launch()
# Start the Gradio app when running the script
if __name__ == "__main__":
gradio_ui()