File size: 6,848 Bytes
37185e0
 
 
 
cdbe688
0707373
 
37185e0
0707373
 
 
 
 
 
 
 
 
 
 
37185e0
0707373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd7b24
0707373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d82ad
0707373
 
 
 
 
 
 
 
 
 
2bd7b24
0707373
2bd7b24
0707373
729192c
0707373
729192c
 
 
0707373
 
12d8a5c
0707373
2bd7b24
0707373
 
 
 
 
 
 
2bd7b24
0707373
 
2bd7b24
0707373
 
 
2bd7b24
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import gradio as gr
import requests
import os

# Load API keys securely from environment variables
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY")  # Proxycurl API key
groq_api_key = os.getenv("GROQ_CLOUD_API_KEY")  # Groq Cloud API key

class EmailAgent:
    def __init__(self, linkedin_url, company_name, role, word_limit):
        self.linkedin_url = linkedin_url
        self.company_name = company_name
        self.role = role
        self.word_limit = word_limit
        self.bio = None
        self.skills = []
        self.experiences = []
        self.company_info = None
        self.role_description = None

    # Reason: Decide what information is needed
    def reason_about_data(self):
        print("Reasoning: I need LinkedIn data, company info, and role description.")
        if not self.linkedin_url:
            print("Missing LinkedIn URL. Request from the user.")
        if not self.company_name:
            print("Missing company name. Request from the user.")
    
    # Action: Fetch LinkedIn data via Proxycurl
    def fetch_linkedin_data(self):
        print("Action: Fetching LinkedIn data from Proxycurl.")
        headers = {
            "Authorization": f"Bearer {proxycurl_api_key}",
        }
        url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}"
        response = requests.get(url, headers=headers)
        if response.status_code == 200:
            data = response.json()
            self.bio = data.get("summary", "No bio available")
            self.skills = data.get("skills", [])
            self.experiences = data.get("experiences", [])
        else:
            print("Error: Unable to fetch LinkedIn profile.")
    
    # Action: Fetch company information via Proxycurl
    def fetch_company_info(self):
        print(f"Action: Fetching company info for {self.company_name}.")
        headers = {
            "Authorization": f"Bearer {proxycurl_api_key}",
        }
        url = f"https://nubela.co/proxycurl/api/v2/linkedin/company?company_name={self.company_name}"
        response = requests.get(url, headers=headers)
        if response.status_code == 200:
            data = response.json()
            self.company_info = data.get("description", "No detailed company info available.")
        else:
            print(f"Error: Unable to fetch company info for {self.company_name}.")
    
    # Action: Fetch role description
    def fetch_role_description(self):
        print(f"Action: Fetching role description for {self.role}.")
        self.role_description = f"The role of {self.role} at {self.company_name} involves..."

    # Reflection: Check if the data is sufficient to generate an email
    def reflect_on_data(self):
        print("Reflection: Do I have enough data to generate the email?")
        if not self.bio or not self.skills or not self.company_info:
            print("Missing some critical information. Need to gather more data.")
            return False
        return True
    
    # Action: Generate the email using Groq Cloud LLM
    def generate_email(self):
        print("Action: Generating the email with the gathered information.")
        prompt = f"""
        Write a professional email applying for the {self.role} position at {self.company_name}.
        The candidate’s bio is: {self.bio}.
        The candidate's LinkedIn profile highlights the following skills: {', '.join(self.skills)}.
        The candidate has the following experiences relevant to the job: {', '.join([exp['title'] for exp in self.experiences])}.
        The email should be professional, concise, and tailored to the company's culture.
        Use relevant company details: {self.company_info}.
        Highlight the candidate’s skills and experiences from LinkedIn, and map them to the job's requirements: {self.role_description}.
        The email should not exceed {self.word_limit} words.
        """
        
        url = "https://api.groq.com/openai/v1/chat/completions"
        headers = {
            "Authorization": f"Bearer {groq_api_key}",
            "Content-Type": "application/json",
        }
        
        data = {
            "messages": [{"role": "user", "content": prompt}],
            "model": "llama3-8b-8192"
        }
        
        response = requests.post(url, headers=headers, json=data)
        if response.status_code == 200:
            return response.json()["choices"][0]["message"]["content"].strip()
        else:
            print(f"Error: {response.status_code}, {response.text}")
            return "Error generating email. Please check your API key or try again later."

    # Main loop following ReAct pattern
    def run(self):
        self.reason_about_data()  # Reason
        self.fetch_linkedin_data()  # Action
        self.fetch_company_info()  # Action
        self.fetch_role_description()  # Action
        if self.reflect_on_data():  # Reflection
            return self.generate_email()  # Final Action
        else:
            return "Error: Not enough data to generate the email."

# Define the Gradio interface and the main app logic
def gradio_ui():
    # Input fields
    name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
    company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
    role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
    email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
    phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
    linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
    word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150)  # New slider for word limit
    
    # Output field
    email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)

    # Function to create and run the email agent
    def create_email(name, company_name, role, email, phone, linkedin_profile_url, word_limit):
        agent = EmailAgent(linkedin_profile_url, company_name, role, word_limit)
        return agent.run()

    # Gradio interface
    demo = gr.Interface(
        fn=create_email,
        inputs=[name_input, company_input, role_input, email_input, phone_input, linkedin_input, word_limit_slider],
        outputs=[email_output],
        title="Email Writing AI Agent with ReAct",
        description="Generate a professional email for a job application using LinkedIn data, company info, and role description.",
        allow_flagging="never"
    )
    
    # Launch the Gradio app
    demo.launch()

# Start the Gradio app when running the script
if __name__ == "__main__":
    gradio_ui()