# app.py import gradio as gr from bs4 import BeautifulSoup from sentence_transformers import SentenceTransformer import faiss import numpy as np import asyncio import aiohttp import re import base64 import logging import os import sys # Import OpenAI library import openai # Set up logging to output to the console logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # Create a console handler console_handler = logging.StreamHandler(sys.stdout) console_handler.setLevel(logging.INFO) # Create a formatter and set it for the handler formatter = logging.Formatter('%(asctime)s %(levelname)s %(name)s %(message)s') console_handler.setFormatter(formatter) # Add the handler to the logger logger.addHandler(console_handler) # Initialize models and variables logger.info("Initializing models and variables") embedding_model = SentenceTransformer('all-MiniLM-L6-v2') faiss_index = None bookmarks = [] fetch_cache = {} # Define the categories CATEGORIES = [ "Social Media", "News and Media", "Education and Learning", "Entertainment", "Shopping and E-commerce", "Finance and Banking", "Technology", "Health and Fitness", "Travel and Tourism", "Food and Recipes", "Sports", "Arts and Culture", "Government and Politics", "Business and Economy", "Science and Research", "Personal Blogs and Journals", "Job Search and Careers", "Music and Audio", "Videos and Movies", "Reference and Knowledge Bases", "Dead Link", "Uncategorized", ] # Set up Groq Cloud API key and base URL GROQ_API_KEY = os.getenv('GROQ_API_KEY') if not GROQ_API_KEY: logger.error("GROQ_API_KEY environment variable not set.") # Set OpenAI API key and base URL to use Groq Cloud API openai.api_key = GROQ_API_KEY openai.api_base = "https://api.groq.com/openai/v1" def extract_main_content(soup): """ Extract the main content from a webpage while filtering out boilerplate content. """ # Remove script and style elements for element in soup(['script', 'style', 'header', 'footer', 'nav', 'ads', 'sidebar']): element.decompose() # Get text from specific content tags first main_content_tags = soup.find_all(['article', 'main', 'div.content', 'div.post']) if main_content_tags: content = ' '.join([tag.get_text(strip=True, separator=' ') for tag in main_content_tags]) else: # Fallback to body content content = soup.body.get_text(strip=True, separator=' ') if soup.body else soup.get_text(strip=True, separator=' ') # Clean up the text content = ' '.join(content.split()) # Limit content length to avoid token limits return content[:3000] def get_page_metadata(soup): """ Extract metadata from the webpage including title, description, and keywords. """ metadata = { 'title': '', 'description': '', 'keywords': '' } # Get title title_tag = soup.find('title') if title_tag: metadata['title'] = title_tag.string.strip() # Get meta description meta_desc = soup.find('meta', attrs={'name': 'description'}) or \ soup.find('meta', attrs={'property': 'og:description'}) if meta_desc: metadata['description'] = meta_desc.get('content', '').strip() # Get meta keywords meta_keywords = soup.find('meta', attrs={'name': 'keywords'}) if meta_keywords: metadata['keywords'] = meta_keywords.get('content', '').strip() return metadata def generate_summary(bookmark): """ Generate a comprehensive summary for a bookmark using available content and LLM. """ logger.info(f"Generating summary for bookmark: {bookmark.get('url')}") try: # Get the HTML soup object from the bookmark if it exists soup = BeautifulSoup(bookmark.get('html_content', ''), 'html.parser') # Step 1: Try to get description from metadata metadata = get_page_metadata(soup) if metadata['description']: logger.info("Using meta description for summary") bookmark['summary'] = metadata['description'] return bookmark # Step 2: If no description, extract main content content = extract_main_content(soup) if not content: logger.warning("No content extracted from page") # Fallback to title if available if metadata['title']: bookmark['summary'] = f"Page title: {metadata['title']}" return bookmark bookmark['summary'] = bookmark.get('title', 'No summary available.') return bookmark # Step 3: Generate summary using LLM try: # Prepare context for LLM prompt = f""" Webpage Title: {metadata['title']} Keywords: {metadata['keywords']} Content: {content} Please provide a concise summary (2-3 sentences) of this webpage's main content. Focus on what the page is about and its key information. Be factual and objective. """ response = openai.ChatCompletion.create( model='llama3-8b-8192', messages=[ {"role": "system", "content": "You are a helpful assistant that creates concise webpage summaries."}, {"role": "user", "content": prompt} ], max_tokens=150, temperature=0.5, ) summary = response['choices'][0]['message']['content'].strip() logger.info("Successfully generated LLM summary") bookmark['summary'] = summary return bookmark except Exception as e: logger.error(f"Error generating LLM summary: {e}") # Fallback to extracted content bookmark['summary'] = ' '.join(content.split()[:50]) + '...' return bookmark except Exception as e: logger.error(f"Error in generate_summary: {e}") # Final fallback bookmark['summary'] = bookmark.get('title', 'No summary available.') return bookmark def parse_bookmarks(file_content): """ Parse bookmarks from HTML file. """ logger.info("Parsing bookmarks") try: soup = BeautifulSoup(file_content, 'html.parser') extracted_bookmarks = [] for link in soup.find_all('a'): url = link.get('href') title = link.text.strip() if url and title: extracted_bookmarks.append({'url': url, 'title': title}) logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks") return extracted_bookmarks except Exception as e: logger.error("Error parsing bookmarks: %s", e) raise async def fetch_url_info(session, bookmark): """ Fetch information about a URL asynchronously. """ url = bookmark['url'] if url in fetch_cache: bookmark.update(fetch_cache[url]) return bookmark try: logger.info(f"Fetching URL info for: {url}") async with session.get(url, timeout=10) as response: bookmark['etag'] = response.headers.get('ETag', 'N/A') bookmark['status_code'] = response.status if response.status >= 400: bookmark['dead_link'] = True bookmark['description'] = '' logger.warning(f"Dead link detected: {url} with status {response.status}") else: bookmark['dead_link'] = False content = await response.text() bookmark['html_content'] = content bookmark['description'] = '' # Will be set by generate_summary function logger.info(f"Fetched information for {url}") except Exception as e: bookmark['dead_link'] = True bookmark['etag'] = 'N/A' bookmark['status_code'] = 'N/A' bookmark['description'] = '' bookmark['html_content'] = '' logger.error(f"Error fetching URL info for {url}: {e}") finally: fetch_cache[url] = { 'etag': bookmark.get('etag'), 'status_code': bookmark.get('status_code'), 'dead_link': bookmark.get('dead_link'), 'description': bookmark.get('description'), 'html_content': bookmark.get('html_content', '') } return bookmark async def process_bookmarks_async(bookmarks_list): """ Process all bookmarks asynchronously. """ logger.info("Processing bookmarks asynchronously") try: async with aiohttp.ClientSession() as session: tasks = [] for bookmark in bookmarks_list: task = asyncio.ensure_future(fetch_url_info(session, bookmark)) tasks.append(task) await asyncio.gather(*tasks) logger.info("Completed processing bookmarks asynchronously") except Exception as e: logger.error(f"Error in asynchronous processing of bookmarks: {e}") raise def assign_category(bookmark): """ Assign a category to a bookmark based on its content. """ if bookmark.get('dead_link'): bookmark['category'] = 'Dead Link' logger.info(f"Assigned category 'Dead Link' to bookmark: {bookmark.get('url')}") return bookmark summary = bookmark.get('summary', '').lower() assigned_category = 'Uncategorized' # Keywords associated with each category category_keywords = { "Social Media": ["social media", "networking", "friends", "connect", "posts", "profile"], "News and Media": ["news", "journalism", "media", "headlines", "breaking news"], "Education and Learning": ["education", "learning", "courses", "tutorial", "university", "academy", "study"], "Entertainment": ["entertainment", "movies", "tv shows", "games", "comics", "fun"], "Shopping and E-commerce": ["shopping", "e-commerce", "buy", "sell", "marketplace", "deals", "store"], "Finance and Banking": ["finance", "banking", "investment", "money", "economy", "stock", "trading"], "Technology": ["technology", "tech", "gadgets", "software", "computers", "innovation"], "Health and Fitness": ["health", "fitness", "medical", "wellness", "exercise", "diet"], "Travel and Tourism": ["travel", "tourism", "destinations", "hotels", "flights", "vacation"], "Food and Recipes": ["food", "recipes", "cooking", "cuisine", "restaurant", "dining"], "Sports": ["sports", "scores", "teams", "athletics", "matches", "leagues"], "Arts and Culture": ["arts", "culture", "museum", "gallery", "exhibition", "artistic"], "Government and Politics": ["government", "politics", "policy", "election", "public service"], "Business and Economy": ["business", "corporate", "industry", "economy", "markets"], "Science and Research": ["science", "research", "experiment", "laboratory", "study", "scientific"], "Personal Blogs and Journals": ["blog", "journal", "personal", "diary", "thoughts", "opinions"], "Job Search and Careers": ["jobs", "careers", "recruitment", "resume", "employment", "hiring"], "Music and Audio": ["music", "audio", "songs", "albums", "artists", "bands"], "Videos and Movies": ["video", "movies", "film", "clips", "trailers", "cinema"], "Reference and Knowledge Bases": ["reference", "encyclopedia", "dictionary", "wiki", "knowledge", "information"], } for category, keywords in category_keywords.items(): for keyword in keywords: if re.search(r'\b' + re.escape(keyword) + r'\b', summary): assigned_category = category logger.info(f"Assigned category '{assigned_category}' to bookmark: {bookmark.get('url')}") break if assigned_category != 'Uncategorized': break bookmark['category'] = assigned_category if assigned_category == 'Uncategorized': logger.info(f"No matching category found for bookmark: {bookmark.get('url')}") return bookmark def vectorize_and_index(bookmarks_list): """ Create vector embeddings for bookmarks and build FAISS index. """ logger.info("Vectorizing summaries and building FAISS index") try: summaries = [bookmark['summary'] for bookmark in bookmarks_list] embeddings = embedding_model.encode(summaries) dimension = embeddings.shape[1] faiss_idx = faiss.IndexFlatL2(dimension) faiss_idx.add(np.array(embeddings)) logger.info("FAISS index built successfully") return faiss_idx, embeddings except Exception as e: logger.error(f"Error in vectorizing and indexing: {e}") raise def display_bookmarks(): """ Generate HTML display for bookmarks. """ logger.info("Generating HTML display for bookmarks") cards = '' for i, bookmark in enumerate(bookmarks): index = i + 1 status = "❌ Dead Link" if bookmark.get('dead_link') else "✅ Active" title = bookmark['title'] url = bookmark['url'] etag = bookmark.get('etag', 'N/A') summary = bookmark.get('summary', '') category = bookmark.get('category', 'Uncategorized') if bookmark.get('dead_link'): card_style = "border: 2px solid var(--error-color);" text_style = "color: var(--error-color);" else: card_style = "border: 2px solid var(--success-color);" text_style = "color: var(--text-color);" card_html = f'''