Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,14 +8,13 @@ import numpy as np
|
|
8 |
import requests
|
9 |
import time
|
10 |
import re
|
11 |
-
import base64
|
12 |
import logging
|
13 |
import os
|
14 |
import sys
|
15 |
import concurrent.futures
|
16 |
from concurrent.futures import ThreadPoolExecutor
|
17 |
import threading
|
18 |
-
from
|
19 |
|
20 |
# Import OpenAI library
|
21 |
import openai
|
@@ -105,7 +104,6 @@ class TokenBucket:
|
|
105 |
with self.lock:
|
106 |
now = time.time()
|
107 |
elapsed = now - self.timestamp
|
108 |
-
# Refill tokens
|
109 |
refill = elapsed * self.rate
|
110 |
self.tokens = min(self.capacity, self.tokens + refill)
|
111 |
self.timestamp = now
|
@@ -126,93 +124,28 @@ tpm_rate = TPM_LIMIT / 60 # tokens per second
|
|
126 |
rpm_bucket = TokenBucket(rate=rpm_rate, capacity=RPM_LIMIT)
|
127 |
tpm_bucket = TokenBucket(rate=tpm_rate, capacity=TPM_LIMIT)
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
Extract the main content from a webpage while filtering out boilerplate content.
|
132 |
-
"""
|
133 |
-
if not soup:
|
134 |
-
return ""
|
135 |
-
|
136 |
-
# Remove unwanted elements
|
137 |
-
for element in soup(['script', 'style', 'header', 'footer', 'nav', 'aside', 'form', 'noscript']):
|
138 |
-
element.decompose()
|
139 |
|
140 |
-
|
141 |
-
p_tags = soup.find_all('p')
|
142 |
-
if p_tags:
|
143 |
-
content = ' '.join([p.get_text(strip=True, separator=' ') for p in p_tags])
|
144 |
-
else:
|
145 |
-
# Fallback to body content
|
146 |
-
content = soup.get_text(separator=' ', strip=True)
|
147 |
-
|
148 |
-
# Clean up the text
|
149 |
-
content = re.sub(r'\s+', ' ', content)
|
150 |
-
|
151 |
-
# Truncate content to a reasonable length (e.g., 1500 words)
|
152 |
-
words = content.split()
|
153 |
-
if len(words) > 1500:
|
154 |
-
content = ' '.join(words[:1500])
|
155 |
-
|
156 |
-
return content
|
157 |
-
|
158 |
-
def get_page_metadata(soup):
|
159 |
"""
|
160 |
-
|
161 |
"""
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
if not soup:
|
169 |
-
return metadata
|
170 |
-
|
171 |
-
# Get title
|
172 |
-
title_tag = soup.find('title')
|
173 |
-
if title_tag and title_tag.string:
|
174 |
-
metadata['title'] = title_tag.string.strip()
|
175 |
-
|
176 |
-
# Get meta description
|
177 |
-
meta_desc = (
|
178 |
-
soup.find('meta', attrs={'name': 'description'}) or
|
179 |
-
soup.find('meta', attrs={'property': 'og:description'}) or
|
180 |
-
soup.find('meta', attrs={'name': 'twitter:description'})
|
181 |
-
)
|
182 |
-
if meta_desc:
|
183 |
-
metadata['description'] = meta_desc.get('content', '').strip()
|
184 |
-
|
185 |
-
# Get meta keywords
|
186 |
-
meta_keywords = soup.find('meta', attrs={'name': 'keywords'})
|
187 |
-
if meta_keywords:
|
188 |
-
metadata['keywords'] = meta_keywords.get('content', '').strip()
|
189 |
-
|
190 |
-
# Get OG title if main title is empty
|
191 |
-
if not metadata['title']:
|
192 |
-
og_title = soup.find('meta', attrs={'property': 'og:title'})
|
193 |
-
if og_title:
|
194 |
-
metadata['title'] = og_title.get('content', '').strip()
|
195 |
-
|
196 |
-
return metadata
|
197 |
-
|
198 |
-
def generate_summary_and_assign_category(bookmark):
|
199 |
-
"""
|
200 |
-
Generate a concise summary and assign a category using a single LLM call.
|
201 |
-
For slow links, always provide a summary.
|
202 |
-
For dead links, provide a summary if possible; otherwise, ignore.
|
203 |
-
"""
|
204 |
-
logger.info(f"Generating summary and assigning category for bookmark: {bookmark.get('url')}")
|
205 |
|
206 |
-
|
207 |
-
|
|
|
208 |
|
209 |
-
while retry_count < max_retries:
|
210 |
try:
|
211 |
# Rate Limiting
|
212 |
rpm_bucket.wait_for_token()
|
213 |
-
#
|
214 |
-
# Here, we assume max_tokens=150
|
215 |
-
tpm_bucket.wait_for_token(tokens=150)
|
216 |
|
217 |
html_content = bookmark.get('html_content', '')
|
218 |
soup = BeautifulSoup(html_content, 'html.parser')
|
@@ -272,17 +205,13 @@ Category: [One category]
|
|
272 |
"""
|
273 |
|
274 |
def estimate_tokens(text):
|
275 |
-
return len(text) / 4
|
276 |
|
277 |
prompt_tokens = estimate_tokens(prompt)
|
278 |
max_tokens = 150
|
279 |
total_tokens = prompt_tokens + max_tokens
|
280 |
|
281 |
-
|
282 |
-
tokens_per_second = tokens_per_minute / 60
|
283 |
-
required_delay = total_tokens / tokens_per_second
|
284 |
-
sleep_time = max(required_delay, 2)
|
285 |
-
|
286 |
response = openai.ChatCompletion.create(
|
287 |
model='llama-3.1-70b-versatile',
|
288 |
messages=[
|
@@ -333,16 +262,13 @@ Category: [One category]
|
|
333 |
bookmark['category'] = 'Reference and Knowledge Bases'
|
334 |
|
335 |
logger.info("Successfully generated summary and assigned category")
|
336 |
-
time.sleep(sleep_time)
|
337 |
-
break
|
338 |
-
|
339 |
except openai.error.RateLimitError as e:
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
time.sleep(
|
344 |
except Exception as e:
|
345 |
-
logger.error(f"Error generating summary and assigning category: {e}", exc_info=True)
|
346 |
# For slow links, provide a summary from metadata or title
|
347 |
if bookmark.get('slow_link', False):
|
348 |
bookmark['summary'] = metadata.get('description') or metadata.get('title') or 'No summary available.'
|
@@ -352,7 +278,120 @@ Category: [One category]
|
|
352 |
else:
|
353 |
bookmark['summary'] = 'No summary available.'
|
354 |
bookmark['category'] = 'Uncategorized'
|
355 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
|
357 |
def parse_bookmarks(file_content):
|
358 |
"""
|
@@ -558,10 +597,14 @@ def process_uploaded_file(file, state_bookmarks):
|
|
558 |
with ThreadPoolExecutor(max_workers=10) as executor:
|
559 |
executor.map(fetch_url_info, bookmarks)
|
560 |
|
561 |
-
# Process bookmarks
|
562 |
-
logger.info("Processing bookmarks
|
563 |
-
|
564 |
-
|
|
|
|
|
|
|
|
|
565 |
|
566 |
try:
|
567 |
faiss_index = vectorize_and_index(bookmarks)
|
@@ -690,7 +733,7 @@ def chatbot_response(user_query, chat_history):
|
|
690 |
|
691 |
# Rate Limiting
|
692 |
rpm_bucket.wait_for_token()
|
693 |
-
tpm_bucket.wait_for_token(tokens=300) # Assuming max_tokens=300
|
694 |
|
695 |
query_vector = embedding_model.encode([user_query]).astype('float32')
|
696 |
k = 5
|
@@ -720,17 +763,12 @@ Provide a concise and helpful response.
|
|
720 |
"""
|
721 |
|
722 |
def estimate_tokens(text):
|
723 |
-
return len(text) / 4
|
724 |
|
725 |
prompt_tokens = estimate_tokens(prompt)
|
726 |
max_tokens = 300
|
727 |
total_tokens = prompt_tokens + max_tokens
|
728 |
|
729 |
-
tokens_per_minute = 40000
|
730 |
-
tokens_per_second = tokens_per_minute / 60
|
731 |
-
required_delay = total_tokens / tokens_per_second
|
732 |
-
sleep_time = max(required_delay, 2)
|
733 |
-
|
734 |
response = openai.ChatCompletion.create(
|
735 |
model='llama-3.1-70b-versatile',
|
736 |
messages=[
|
@@ -742,14 +780,13 @@ Provide a concise and helpful response.
|
|
742 |
|
743 |
answer = response['choices'][0]['message']['content'].strip()
|
744 |
logger.info("Chatbot response generated")
|
745 |
-
time.sleep(sleep_time)
|
746 |
|
747 |
chat_history.append({"role": "assistant", "content": answer})
|
748 |
return chat_history
|
749 |
|
750 |
except openai.error.RateLimitError as e:
|
751 |
-
wait_time = int(e.headers.get("Retry-After",
|
752 |
-
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying...")
|
753 |
time.sleep(wait_time)
|
754 |
return chatbot_response(user_query, chat_history)
|
755 |
except Exception as e:
|
|
|
8 |
import requests
|
9 |
import time
|
10 |
import re
|
|
|
11 |
import logging
|
12 |
import os
|
13 |
import sys
|
14 |
import concurrent.futures
|
15 |
from concurrent.futures import ThreadPoolExecutor
|
16 |
import threading
|
17 |
+
from queue import Queue, Empty
|
18 |
|
19 |
# Import OpenAI library
|
20 |
import openai
|
|
|
104 |
with self.lock:
|
105 |
now = time.time()
|
106 |
elapsed = now - self.timestamp
|
|
|
107 |
refill = elapsed * self.rate
|
108 |
self.tokens = min(self.capacity, self.tokens + refill)
|
109 |
self.timestamp = now
|
|
|
124 |
rpm_bucket = TokenBucket(rate=rpm_rate, capacity=RPM_LIMIT)
|
125 |
tpm_bucket = TokenBucket(rate=tpm_rate, capacity=TPM_LIMIT)
|
126 |
|
127 |
+
# Queue for LLM tasks
|
128 |
+
llm_queue = Queue()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
def llm_worker():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
"""
|
132 |
+
Worker thread to process LLM tasks from the queue while respecting rate limits.
|
133 |
"""
|
134 |
+
logger.info("LLM worker started.")
|
135 |
+
while True:
|
136 |
+
try:
|
137 |
+
bookmark = llm_queue.get(timeout=60) # Wait for a task
|
138 |
+
except Empty:
|
139 |
+
continue # No task, continue waiting
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
if bookmark is None:
|
142 |
+
logger.info("LLM worker shutting down.")
|
143 |
+
break # Exit signal
|
144 |
|
|
|
145 |
try:
|
146 |
# Rate Limiting
|
147 |
rpm_bucket.wait_for_token()
|
148 |
+
tpm_bucket.wait_for_token(tokens=150) # Assuming max_tokens=150 per request
|
|
|
|
|
149 |
|
150 |
html_content = bookmark.get('html_content', '')
|
151 |
soup = BeautifulSoup(html_content, 'html.parser')
|
|
|
205 |
"""
|
206 |
|
207 |
def estimate_tokens(text):
|
208 |
+
return len(text) / 4 # Approximation
|
209 |
|
210 |
prompt_tokens = estimate_tokens(prompt)
|
211 |
max_tokens = 150
|
212 |
total_tokens = prompt_tokens + max_tokens
|
213 |
|
214 |
+
# Prepare the prompt with token estimation
|
|
|
|
|
|
|
|
|
215 |
response = openai.ChatCompletion.create(
|
216 |
model='llama-3.1-70b-versatile',
|
217 |
messages=[
|
|
|
262 |
bookmark['category'] = 'Reference and Knowledge Bases'
|
263 |
|
264 |
logger.info("Successfully generated summary and assigned category")
|
|
|
|
|
|
|
265 |
except openai.error.RateLimitError as e:
|
266 |
+
logger.warning(f"LLM Rate limit reached while processing {bookmark.get('url')}. Retrying later...")
|
267 |
+
# Re-enqueue the bookmark for retry
|
268 |
+
llm_queue.put(bookmark)
|
269 |
+
time.sleep(60) # Wait before retrying
|
270 |
except Exception as e:
|
271 |
+
logger.error(f"Error generating summary and assigning category for {bookmark.get('url')}: {e}", exc_info=True)
|
272 |
# For slow links, provide a summary from metadata or title
|
273 |
if bookmark.get('slow_link', False):
|
274 |
bookmark['summary'] = metadata.get('description') or metadata.get('title') or 'No summary available.'
|
|
|
278 |
else:
|
279 |
bookmark['summary'] = 'No summary available.'
|
280 |
bookmark['category'] = 'Uncategorized'
|
281 |
+
finally:
|
282 |
+
llm_queue.task_done()
|
283 |
+
|
284 |
+
# Start the LLM worker thread
|
285 |
+
llm_thread = threading.Thread(target=llm_worker, daemon=True)
|
286 |
+
llm_thread.start()
|
287 |
+
|
288 |
+
def extract_main_content(soup):
|
289 |
+
"""
|
290 |
+
Extract the main content from a webpage while filtering out boilerplate content.
|
291 |
+
"""
|
292 |
+
if not soup:
|
293 |
+
return ""
|
294 |
+
|
295 |
+
# Remove unwanted elements
|
296 |
+
for element in soup(['script', 'style', 'header', 'footer', 'nav', 'aside', 'form', 'noscript']):
|
297 |
+
element.decompose()
|
298 |
+
|
299 |
+
# Extract text from <p> tags
|
300 |
+
p_tags = soup.find_all('p')
|
301 |
+
if p_tags:
|
302 |
+
content = ' '.join([p.get_text(strip=True, separator=' ') for p in p_tags])
|
303 |
+
else:
|
304 |
+
# Fallback to body content
|
305 |
+
content = soup.get_text(separator=' ', strip=True)
|
306 |
+
|
307 |
+
# Clean up the text
|
308 |
+
content = re.sub(r'\s+', ' ', content)
|
309 |
+
|
310 |
+
# Truncate content to a reasonable length (e.g., 1500 words)
|
311 |
+
words = content.split()
|
312 |
+
if len(words) > 1500:
|
313 |
+
content = ' '.join(words[:1500])
|
314 |
+
|
315 |
+
return content
|
316 |
+
|
317 |
+
def get_page_metadata(soup):
|
318 |
+
"""
|
319 |
+
Extract metadata from the webpage including title, description, and keywords.
|
320 |
+
"""
|
321 |
+
metadata = {
|
322 |
+
'title': '',
|
323 |
+
'description': '',
|
324 |
+
'keywords': ''
|
325 |
+
}
|
326 |
+
|
327 |
+
if not soup:
|
328 |
+
return metadata
|
329 |
+
|
330 |
+
# Get title
|
331 |
+
title_tag = soup.find('title')
|
332 |
+
if title_tag and title_tag.string:
|
333 |
+
metadata['title'] = title_tag.string.strip()
|
334 |
+
|
335 |
+
# Get meta description
|
336 |
+
meta_desc = (
|
337 |
+
soup.find('meta', attrs={'name': 'description'}) or
|
338 |
+
soup.find('meta', attrs={'property': 'og:description'}) or
|
339 |
+
soup.find('meta', attrs={'name': 'twitter:description'})
|
340 |
+
)
|
341 |
+
if meta_desc:
|
342 |
+
metadata['description'] = meta_desc.get('content', '').strip()
|
343 |
+
|
344 |
+
# Get meta keywords
|
345 |
+
meta_keywords = soup.find('meta', attrs={'name': 'keywords'})
|
346 |
+
if meta_keywords:
|
347 |
+
metadata['keywords'] = meta_keywords.get('content', '').strip()
|
348 |
+
|
349 |
+
# Get OG title if main title is empty
|
350 |
+
if not metadata['title']:
|
351 |
+
og_title = soup.find('meta', attrs={'property': 'og:title'})
|
352 |
+
if og_title:
|
353 |
+
metadata['title'] = og_title.get('content', '').strip()
|
354 |
+
|
355 |
+
return metadata
|
356 |
+
|
357 |
+
def generate_summary_and_assign_category(bookmark):
|
358 |
+
"""
|
359 |
+
Generate a concise summary and assign a category.
|
360 |
+
This function decides whether to use metadata or enqueue an LLM call.
|
361 |
+
"""
|
362 |
+
# Check if metadata can provide a summary
|
363 |
+
description = bookmark.get('description', '').strip()
|
364 |
+
title = bookmark.get('title', '').strip()
|
365 |
+
|
366 |
+
if description:
|
367 |
+
# Use description as summary
|
368 |
+
bookmark['summary'] = description
|
369 |
+
# Assign category based on description or title
|
370 |
+
assign_category_based_on_summary(bookmark)
|
371 |
+
logger.info(f"Summary derived from metadata for {bookmark.get('url')}")
|
372 |
+
elif title:
|
373 |
+
# Use title as summary
|
374 |
+
bookmark['summary'] = title
|
375 |
+
# Assign category based on title
|
376 |
+
assign_category_based_on_summary(bookmark)
|
377 |
+
logger.info(f"Summary derived from title for {bookmark.get('url')}")
|
378 |
+
else:
|
379 |
+
# Enqueue for LLM processing
|
380 |
+
logger.info(f"No sufficient metadata for {bookmark.get('url')}. Enqueuing for LLM summary generation.")
|
381 |
+
llm_queue.put(bookmark)
|
382 |
+
|
383 |
+
def assign_category_based_on_summary(bookmark):
|
384 |
+
"""
|
385 |
+
Assign category based on simple keyword matching in the summary.
|
386 |
+
"""
|
387 |
+
summary_lower = bookmark.get('summary', '').lower()
|
388 |
+
url_lower = bookmark['url'].lower()
|
389 |
+
if 'social media' in summary_lower or 'twitter' in summary_lower or 'x.com' in url_lower:
|
390 |
+
bookmark['category'] = 'Social Media'
|
391 |
+
elif 'wikipedia' in url_lower:
|
392 |
+
bookmark['category'] = 'Reference and Knowledge Bases'
|
393 |
+
else:
|
394 |
+
bookmark['category'] = 'Uncategorized'
|
395 |
|
396 |
def parse_bookmarks(file_content):
|
397 |
"""
|
|
|
597 |
with ThreadPoolExecutor(max_workers=10) as executor:
|
598 |
executor.map(fetch_url_info, bookmarks)
|
599 |
|
600 |
+
# Process bookmarks for summary and category
|
601 |
+
logger.info("Processing bookmarks for summaries and categories")
|
602 |
+
for bookmark in bookmarks:
|
603 |
+
generate_summary_and_assign_category(bookmark)
|
604 |
+
|
605 |
+
# Wait until all LLM tasks are completed
|
606 |
+
llm_queue.join()
|
607 |
+
logger.info("All LLM tasks have been processed")
|
608 |
|
609 |
try:
|
610 |
faiss_index = vectorize_and_index(bookmarks)
|
|
|
733 |
|
734 |
# Rate Limiting
|
735 |
rpm_bucket.wait_for_token()
|
736 |
+
tpm_bucket.wait_for_token(tokens=300) # Assuming max_tokens=300 per request
|
737 |
|
738 |
query_vector = embedding_model.encode([user_query]).astype('float32')
|
739 |
k = 5
|
|
|
763 |
"""
|
764 |
|
765 |
def estimate_tokens(text):
|
766 |
+
return len(text) / 4 # Approximation
|
767 |
|
768 |
prompt_tokens = estimate_tokens(prompt)
|
769 |
max_tokens = 300
|
770 |
total_tokens = prompt_tokens + max_tokens
|
771 |
|
|
|
|
|
|
|
|
|
|
|
772 |
response = openai.ChatCompletion.create(
|
773 |
model='llama-3.1-70b-versatile',
|
774 |
messages=[
|
|
|
780 |
|
781 |
answer = response['choices'][0]['message']['content'].strip()
|
782 |
logger.info("Chatbot response generated")
|
|
|
783 |
|
784 |
chat_history.append({"role": "assistant", "content": answer})
|
785 |
return chat_history
|
786 |
|
787 |
except openai.error.RateLimitError as e:
|
788 |
+
wait_time = int(e.headers.get("Retry-After", 60))
|
789 |
+
logger.warning(f"Chatbot Rate limit reached. Waiting for {wait_time} seconds before retrying...")
|
790 |
time.sleep(wait_time)
|
791 |
return chatbot_response(user_query, chat_history)
|
792 |
except Exception as e:
|