siddhartharya's picture
Update app.py
2a1c0da verified
raw
history blame
21.7 kB
# app.py
import gradio as gr
from bs4 import BeautifulSoup
import requests
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import asyncio
import aiohttp
import re
import base64
import logging
import os
import sys
# Import OpenAI library
import openai
# Set up logging to output to the console
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Create a console handler
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.INFO)
# Create a formatter and set it for the handler
formatter = logging.Formatter('%(asctime)s %(levelname)s %(name)s %(message)s')
console_handler.setFormatter(formatter)
# Add the handler to the logger
logger.addHandler(console_handler)
# Initialize models and variables
logger.info("Initializing models and variables")
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = None
bookmarks = []
fetch_cache = {}
# Define the categories
CATEGORIES = [
"Social Media",
"News and Media",
"Education and Learning",
"Entertainment",
"Shopping and E-commerce",
"Finance and Banking",
"Technology",
"Health and Fitness",
"Travel and Tourism",
"Food and Recipes",
"Sports",
"Arts and Culture",
"Government and Politics",
"Business and Economy",
"Science and Research",
"Personal Blogs and Journals",
"Job Search and Careers",
"Music and Audio",
"Videos and Movies",
"Reference and Knowledge Bases",
"Dead Link",
"Uncategorized",
]
# Set up Groq Cloud API key and base URL
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
if not GROQ_API_KEY:
logger.error("GROQ_API_KEY environment variable not set.")
# Set OpenAI API key and base URL to use Groq Cloud API
openai.api_key = GROQ_API_KEY
openai.api_base = "https://api.groq.com/openai/v1" # Corrected API base URL
# Function to parse bookmarks from HTML
def parse_bookmarks(file_content):
logger.info("Parsing bookmarks")
try:
soup = BeautifulSoup(file_content, 'html.parser')
extracted_bookmarks = []
for link in soup.find_all('a'):
url = link.get('href')
title = link.text.strip()
if url and title:
extracted_bookmarks.append({'url': url, 'title': title})
logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
return extracted_bookmarks
except Exception as e:
logger.error("Error parsing bookmarks: %s", e)
raise
# Asynchronous function to fetch URL info
async def fetch_url_info(session, bookmark):
url = bookmark['url']
if url in fetch_cache:
bookmark.update(fetch_cache[url])
return bookmark
try:
logger.info(f"Fetching URL info for: {url}")
async with session.get(url, timeout=5) as response:
bookmark['etag'] = response.headers.get('ETag', 'N/A')
bookmark['status_code'] = response.status
if response.status >= 400:
bookmark['dead_link'] = True
bookmark['description'] = ''
logger.warning(f"Dead link detected: {url} with status {response.status}")
else:
bookmark['dead_link'] = False
content = await response.text()
soup = BeautifulSoup(content, 'html.parser')
# Extract meta description or Open Graph description
meta_description = soup.find('meta', attrs={'name': 'description'})
og_description = soup.find('meta', attrs={'property': 'og:description'})
if og_description and og_description.get('content'):
description = og_description.get('content')
elif meta_description and meta_description.get('content'):
description = meta_description.get('content')
else:
description = ''
bookmark['description'] = description
logger.info(f"Fetched description for {url}")
except Exception as e:
bookmark['dead_link'] = True
bookmark['etag'] = 'N/A'
bookmark['status_code'] = 'N/A'
bookmark['description'] = ''
logger.error(f"Error fetching URL info for {url}: {e}")
finally:
fetch_cache[url] = {
'etag': bookmark.get('etag'),
'status_code': bookmark.get('status_code'),
'dead_link': bookmark.get('dead_link'),
'description': bookmark.get('description'),
}
return bookmark
# Asynchronous processing of bookmarks
async def process_bookmarks_async(bookmarks):
logger.info("Processing bookmarks asynchronously")
try:
async with aiohttp.ClientSession() as session:
tasks = []
for bookmark in bookmarks:
task = asyncio.ensure_future(fetch_url_info(session, bookmark))
tasks.append(task)
await asyncio.gather(*tasks)
logger.info("Completed processing bookmarks asynchronously")
except Exception as e:
logger.error(f"Error in asynchronous processing of bookmarks: {e}")
raise
# Generate summary for a bookmark
def generate_summary(bookmark):
description = bookmark.get('description', '')
if description:
bookmark['summary'] = description
else:
title = bookmark.get('title', '')
if title:
bookmark['summary'] = title
else:
bookmark['summary'] = 'No summary available.'
logger.info(f"Generated summary for bookmark: {bookmark.get('url')}")
return bookmark
# Assign category to a bookmark
def assign_category(bookmark):
if bookmark.get('dead_link'):
bookmark['category'] = 'Dead Link'
logger.info(f"Assigned category 'Dead Link' to bookmark: {bookmark.get('url')}")
return bookmark
summary = bookmark.get('summary', '').lower()
assigned_category = 'Uncategorized'
# Keywords associated with each category
category_keywords = {
"Social Media": ["social media", "networking", "friends", "connect", "posts", "profile"],
"News and Media": ["news", "journalism", "media", "headlines", "breaking news"],
"Education and Learning": ["education", "learning", "courses", "tutorial", "university", "academy", "study"],
"Entertainment": ["entertainment", "movies", "tv shows", "games", "comics", "fun"],
"Shopping and E-commerce": ["shopping", "e-commerce", "buy", "sell", "marketplace", "deals", "store"],
"Finance and Banking": ["finance", "banking", "investment", "money", "economy", "stock", "trading"],
"Technology": ["technology", "tech", "gadgets", "software", "computers", "innovation"],
"Health and Fitness": ["health", "fitness", "medical", "wellness", "exercise", "diet"],
"Travel and Tourism": ["travel", "tourism", "destinations", "hotels", "flights", "vacation"],
"Food and Recipes": ["food", "recipes", "cooking", "cuisine", "restaurant", "dining"],
"Sports": ["sports", "scores", "teams", "athletics", "matches", "leagues"],
"Arts and Culture": ["arts", "culture", "museum", "gallery", "exhibition", "artistic"],
"Government and Politics": ["government", "politics", "policy", "election", "public service"],
"Business and Economy": ["business", "corporate", "industry", "economy", "markets"],
"Science and Research": ["science", "research", "experiment", "laboratory", "study", "scientific"],
"Personal Blogs and Journals": ["blog", "journal", "personal", "diary", "thoughts", "opinions"],
"Job Search and Careers": ["jobs", "careers", "recruitment", "resume", "employment", "hiring"],
"Music and Audio": ["music", "audio", "songs", "albums", "artists", "bands"],
"Videos and Movies": ["video", "movies", "film", "clips", "trailers", "cinema"],
"Reference and Knowledge Bases": ["reference", "encyclopedia", "dictionary", "wiki", "knowledge", "information"],
}
for category, keywords in category_keywords.items():
for keyword in keywords:
if re.search(r'\b' + re.escape(keyword) + r'\b', summary):
assigned_category = category
logger.info(f"Assigned category '{assigned_category}' to bookmark: {bookmark.get('url')}")
break
if assigned_category != 'Uncategorized':
break
bookmark['category'] = assigned_category
if assigned_category == 'Uncategorized':
logger.info(f"No matching category found for bookmark: {bookmark.get('url')}")
return bookmark
# Vectorize summaries and build FAISS index
def vectorize_and_index(bookmarks):
logger.info("Vectorizing summaries and building FAISS index")
try:
summaries = [bookmark['summary'] for bookmark in bookmarks]
embeddings = embedding_model.encode(summaries)
dimension = embeddings.shape[1]
faiss_idx = faiss.IndexFlatL2(dimension)
faiss_idx.add(np.array(embeddings))
logger.info("FAISS index built successfully")
return faiss_idx, embeddings
except Exception as e:
logger.error(f"Error in vectorizing and indexing: {e}")
raise
# Generate HTML display for bookmarks
def display_bookmarks():
logger.info("Generating HTML display for bookmarks")
cards = ''
for i, bookmark in enumerate(bookmarks):
index = i + 1 # Start index at 1
status = "Dead Link" if bookmark.get('dead_link') else "Active"
title = bookmark['title']
url = bookmark['url']
etag = bookmark.get('etag', 'N/A')
summary = bookmark.get('summary', '')
category = bookmark.get('category', 'Uncategorized')
# Apply inline styles for dead links
if bookmark.get('dead_link'):
card_style = "border: 2px solid #D32F2F;"
text_style = "color: #D32F2F;"
else:
card_style = ""
text_style = ""
card_html = f'''
<div class="card" style="{card_style}">
<div class="card-content">
<h3 style="{text_style}">{index}. {title}</h3>
<p style="{text_style}"><strong>Category:</strong> {category}</p>
<p style="{text_style}"><strong>URL:</strong> <a href="{url}" target="_blank" style="{text_style}">{url}</a></p>
<p style="{text_style}"><strong>Status:</strong> {status}</p>
<p style="{text_style}"><strong>ETag:</strong> {etag}</p>
<p style="{text_style}"><strong>Summary:</strong> {summary}</p>
</div>
</div>
'''
cards += card_html
logger.info("HTML display generated")
return cards
# Process the uploaded file
def process_uploaded_file(file):
global bookmarks, faiss_index
logger.info("Processing uploaded file")
if file is None:
logger.warning("No file uploaded")
return "Please upload a bookmarks HTML file.", '', gr.update(), ''
try:
file_content = file.decode('utf-8')
except UnicodeDecodeError as e:
logger.error(f"Error decoding the file: {e}")
return "Error decoding the file. Please ensure it's a valid HTML file.", '', gr.update(), ''
try:
bookmarks = parse_bookmarks(file_content)
except Exception as e:
logger.error(f"Error parsing bookmarks: {e}")
return "Error parsing the bookmarks HTML file.", '', gr.update(), ''
if not bookmarks:
logger.warning("No bookmarks found in the uploaded file")
return "No bookmarks found in the uploaded file.", '', gr.update(), ''
# Asynchronously fetch bookmark info
try:
asyncio.run(process_bookmarks_async(bookmarks))
except Exception as e:
logger.error(f"Error processing bookmarks asynchronously: {e}")
return "Error processing bookmarks.", '', gr.update(), ''
# Generate summaries and assign categories
for bookmark in bookmarks:
generate_summary(bookmark)
assign_category(bookmark)
try:
faiss_index, embeddings = vectorize_and_index(bookmarks)
except Exception as e:
logger.error(f"Error building FAISS index: {e}")
return "Error building search index.", '', gr.update(), ''
message = f"Successfully processed {len(bookmarks)} bookmarks."
logger.info(message)
bookmark_html = display_bookmarks()
# Update bookmark_selector choices
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)]
bookmark_selector_update = gr.update(choices=choices, value=[])
# Update bookmark_display_manage
bookmark_display_manage_update = display_bookmarks()
return message, bookmark_html, bookmark_selector_update, bookmark_display_manage_update
# Delete selected bookmarks
def delete_selected_bookmarks(selected_indices):
global bookmarks, faiss_index
if not selected_indices:
return "No bookmarks selected.", gr.update(), ''
indices = [int(s.split('.')[0])-1 for s in selected_indices]
indices = sorted(indices, reverse=True)
for idx in indices:
if 0 <= idx < len(bookmarks):
logger.info(f"Deleting bookmark at index {idx + 1}")
bookmarks.pop(idx)
if bookmarks:
faiss_index, embeddings = vectorize_and_index(bookmarks)
else:
faiss_index = None
message = "Selected bookmarks deleted successfully."
logger.info(message)
# Update bookmark_selector choices
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)]
bookmark_selector_update = gr.update(choices=choices, value=[])
# Update bookmarks display
bookmarks_html = display_bookmarks()
return message, bookmark_selector_update, bookmarks_html
# Edit category of selected bookmarks
def edit_selected_bookmarks_category(selected_indices, new_category):
if not selected_indices:
return "No bookmarks selected.", '', gr.update()
if not new_category:
return "No new category selected.", '', gr.update()
indices = [int(s.split('.')[0])-1 for s in selected_indices]
for idx in indices:
if 0 <= idx < len(bookmarks):
bookmarks[idx]['category'] = new_category
message = "Category updated for selected bookmarks."
logger.info(message)
# Update bookmark_selector choices
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)]
bookmark_selector_update = gr.update(choices=choices, value=[])
# Update bookmarks display
bookmarks_html = display_bookmarks()
return message, bookmark_selector_update, bookmarks_html
# Export bookmarks to HTML
def export_bookmarks():
if not bookmarks:
logger.warning("No bookmarks to export")
return "No bookmarks to export."
try:
logger.info("Exporting bookmarks to HTML")
# Create an HTML content similar to the imported bookmarks file
soup = BeautifulSoup("<!DOCTYPE NETSCAPE-Bookmark-file-1><Title>Bookmarks</Title><H1>Bookmarks</H1>", 'html.parser')
dl = soup.new_tag('DL')
for bookmark in bookmarks:
dt = soup.new_tag('DT')
a = soup.new_tag('A', href=bookmark['url'])
a.string = bookmark['title']
dt.append(a)
dl.append(dt)
soup.append(dl)
html_content = str(soup)
# Encode the HTML content to base64 for download
b64 = base64.b64encode(html_content.encode()).decode()
href = f'data:text/html;base64,{b64}'
logger.info("Bookmarks exported successfully")
return f'<a href="{href}" download="bookmarks.html">Download Exported Bookmarks</a>'
except Exception as e:
logger.error(f"Error exporting bookmarks: {e}")
return "Error exporting bookmarks."
# Chatbot response using Groq Cloud API
def chatbot_response(user_query):
if not GROQ_API_KEY:
logger.warning("GROQ_API_KEY not set.")
return "API key not set. Please set the GROQ_API_KEY environment variable in the Hugging Face Space settings."
if not bookmarks:
logger.warning("No bookmarks available for chatbot")
return "No bookmarks available. Please upload and process your bookmarks first."
logger.info(f"Chatbot received query: {user_query}")
# Prepare the prompt for the LLM
try:
# Limit the number of bookmarks to prevent exceeding token limits
max_bookmarks = 50 # Adjust as needed
bookmark_data = ""
for idx, bookmark in enumerate(bookmarks[:max_bookmarks]):
bookmark_data += f"{idx+1}. Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}\n\n"
# Construct the prompt
prompt = f"""
You are an assistant that helps users find relevant bookmarks from their collection based on their queries.
User Query:
{user_query}
Bookmarks:
{bookmark_data}
Please identify the most relevant bookmarks that match the user's query. Provide a concise list including the index, title, URL, and a brief summary.
"""
# Call the Groq Cloud API via the OpenAI client
response = openai.ChatCompletion.create(
model='llama3-8b-8192', # Verify this model name with Groq Cloud API documentation
messages=[
{"role": "system", "content": "You help users find relevant bookmarks based on their queries."},
{"role": "user", "content": prompt}
],
max_tokens=500,
temperature=0.7,
)
# Extract the response text
answer = response['choices'][0]['message']['content'].strip()
logger.info("Chatbot response generated using Groq Cloud API")
return answer
except Exception as e:
error_message = f"Error processing your query: {str(e)}"
logger.error(error_message)
print(error_message) # Ensure error appears in Hugging Face Spaces logs
return error_message
# Build the Gradio app
def build_app():
try:
logger.info("Building Gradio app")
with gr.Blocks(css="app.css") as demo:
gr.Markdown("<h1>Bookmark Manager App</h1>")
with gr.Tab("Upload and Process Bookmarks"):
upload = gr.File(label="Upload Bookmarks HTML File", type='binary')
process_button = gr.Button("Process Bookmarks")
output_text = gr.Textbox(label="Output")
bookmark_display = gr.HTML(label="Bookmarks")
def update_bookmark_display(file):
return process_uploaded_file(file)
process_button.click(
process_uploaded_file,
inputs=upload,
outputs=[output_text, bookmark_display, gr.State(), gr.State()]
)
with gr.Tab("Chat with Bookmarks"):
user_input = gr.Textbox(label="Ask about your bookmarks")
chat_output = gr.Textbox(label="Chatbot Response")
chat_button = gr.Button("Send")
chat_button.click(
chatbot_response,
inputs=user_input,
outputs=chat_output
)
with gr.Tab("Manage Bookmarks"):
manage_output = gr.Textbox(label="Manage Output", interactive=False)
bookmark_display_manage = gr.HTML(label="Bookmarks")
bookmark_selector = gr.CheckboxGroup(label="Select Bookmarks", choices=[])
new_category_input = gr.Dropdown(label="New Category", choices=CATEGORIES)
with gr.Row():
delete_button = gr.Button("Delete Selected Bookmarks")
edit_category_button = gr.Button("Edit Category of Selected Bookmarks")
export_button = gr.Button("Export Bookmarks")
download_link = gr.HTML(label="Download Exported Bookmarks")
# Update the bookmark display and selector when the app loads
bookmark_display_manage.value = display_bookmarks()
bookmark_selector.choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)]
# Define button actions
delete_button.click(
delete_selected_bookmarks,
inputs=bookmark_selector,
outputs=[manage_output, bookmark_selector, bookmark_display_manage]
)
edit_category_button.click(
edit_selected_bookmarks_category,
inputs=[bookmark_selector, new_category_input],
outputs=[manage_output, bookmark_selector, bookmark_display_manage]
)
export_button.click(
export_bookmarks,
inputs=None,
outputs=download_link
)
# Update the bookmark display and selector after processing bookmarks
process_button.click(
process_uploaded_file,
inputs=upload,
outputs=[output_text, bookmark_display, bookmark_selector, bookmark_display_manage]
)
logger.info("Launching Gradio app")
demo.launch(debug=True)
except Exception as e:
logger.error(f"Error building the app: {e}")
print(f"Error building the app: {e}")
if __name__ == "__main__":
build_app()