Spaces:
Running
Running
File size: 7,369 Bytes
314bf31 a4303b2 314bf31 e3f2905 314bf31 a4303b2 314bf31 a4303b2 314bf31 a4303b2 314bf31 a4303b2 314bf31 a4303b2 e3f2905 314bf31 e3f2905 a4303b2 e3f2905 a4303b2 314bf31 e3f2905 a4303b2 e3f2905 a4303b2 314bf31 a4303b2 314bf31 e3f2905 a4303b2 e3f2905 a4303b2 e3f2905 a4303b2 314bf31 e3f2905 a4303b2 e3f2905 a4303b2 e3f2905 a4303b2 e3f2905 a4303b2 314bf31 a4303b2 314bf31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# app.py
import gradio as gr
from bs4 import BeautifulSoup
import requests
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
# Initialize models and variables
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = None # Renamed from 'index' to 'faiss_index'
bookmarks = []
fetch_cache = {}
# Helper functions
def parse_bookmarks(file_content):
soup = BeautifulSoup(file_content, 'html.parser')
extracted_bookmarks = []
for link in soup.find_all('a'):
url = link.get('href')
title = link.text
if url and title:
extracted_bookmarks.append({'url': url, 'title': title})
return extracted_bookmarks
def fetch_url_info(bookmark):
url = bookmark['url']
if url in fetch_cache:
bookmark.update(fetch_cache[url])
return bookmark
try:
response = requests.get(url, timeout=5)
bookmark['etag'] = response.headers.get('ETag', 'N/A')
bookmark['status_code'] = response.status_code
if response.status_code >= 400:
bookmark['dead_link'] = True
bookmark['content'] = ''
else:
bookmark['dead_link'] = False
soup = BeautifulSoup(response.content, 'html.parser')
meta_tags = {meta.get('name', ''): meta.get('content', '') for meta in soup.find_all('meta')}
bookmark['meta_tags'] = meta_tags
bookmark['content'] = soup.get_text(separator=' ', strip=True)
except Exception as e:
bookmark['dead_link'] = True
bookmark['etag'] = 'N/A'
bookmark['status_code'] = 'N/A'
bookmark['meta_tags'] = {}
bookmark['content'] = ''
finally:
fetch_cache[url] = {
'etag': bookmark.get('etag'),
'status_code': bookmark.get('status_code'),
'dead_link': bookmark.get('dead_link'),
'meta_tags': bookmark.get('meta_tags'),
'content': bookmark.get('content'),
}
return bookmark
def generate_summary(bookmark):
content = bookmark.get('content', '')
if content:
# Limit content to first 2000 characters to save resources
content = content[:2000]
summary = summarizer(content, max_length=50, min_length=25, do_sample=False)
bookmark['summary'] = summary[0]['summary_text']
else:
bookmark['summary'] = 'No content available to summarize.'
return bookmark
def vectorize_and_index(bookmarks):
summaries = [bookmark['summary'] for bookmark in bookmarks]
embeddings = embedding_model.encode(summaries)
dimension = embeddings.shape[1]
faiss_idx = faiss.IndexFlatL2(dimension)
faiss_idx.add(np.array(embeddings))
return faiss_idx, embeddings
def process_uploaded_file(file):
global bookmarks, faiss_index
if file is None:
return "Please upload a bookmarks HTML file."
file_content = file.read().decode('utf-8')
bookmarks = parse_bookmarks(file_content)
for bookmark in bookmarks:
fetch_url_info(bookmark)
generate_summary(bookmark)
faiss_index, embeddings = vectorize_and_index(bookmarks)
return f"Successfully processed {len(bookmarks)} bookmarks."
def chatbot_response(user_query):
if faiss_index is None or not bookmarks:
return "No bookmarks available. Please upload and process your bookmarks first."
# Vectorize user query
user_embedding = embedding_model.encode([user_query])
D, I = faiss_index.search(np.array(user_embedding), k=5) # Retrieve top 5 matches
# Generate response
response = ""
for idx in I[0]:
bookmark = bookmarks[idx]
response += f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}\n\n"
return response.strip()
def display_bookmarks():
bookmark_list = []
for i, bookmark in enumerate(bookmarks):
status = "Dead Link" if bookmark.get('dead_link') else "Active"
bookmark_list.append([i, bookmark['title'], bookmark['url'], status])
return bookmark_list
def edit_bookmark(bookmark_idx, new_title, new_url):
global faiss_index # Reference the global faiss_index variable
try:
bookmark_idx = int(bookmark_idx)
bookmarks[bookmark_idx]['title'] = new_title
bookmarks[bookmark_idx]['url'] = new_url
fetch_url_info(bookmarks[bookmark_idx])
generate_summary(bookmarks[bookmark_idx])
# Rebuild the FAISS index
faiss_index, embeddings = vectorize_and_index(bookmarks)
return "Bookmark updated successfully."
except Exception as e:
return f"Error: {str(e)}"
def delete_bookmark(bookmark_idx):
global faiss_index # Reference the global faiss_index variable
try:
bookmark_idx = int(bookmark_idx)
bookmarks.pop(bookmark_idx)
# Rebuild the FAISS index
if bookmarks:
faiss_index, embeddings = vectorize_and_index(bookmarks)
else:
faiss_index = None # No bookmarks left
return "Bookmark deleted successfully."
except Exception as e:
return f"Error: {str(e)}"
def build_app():
with gr.Blocks() as demo:
gr.Markdown("# Bookmark Manager App")
with gr.Tab("Upload and Process Bookmarks"):
upload = gr.File(label="Upload Bookmarks HTML File")
process_button = gr.Button("Process Bookmarks")
output_text = gr.Textbox(label="Output")
process_button.click(
process_uploaded_file,
inputs=upload,
outputs=output_text
)
with gr.Tab("Chat with Bookmarks"):
user_input = gr.Textbox(label="Ask about your bookmarks")
chat_output = gr.Textbox(label="Chatbot Response")
chat_button = gr.Button("Send")
chat_button.click(
chatbot_response,
inputs=user_input,
outputs=chat_output
)
with gr.Tab("Manage Bookmarks"):
bookmark_table = gr.Dataframe(
headers=["Index", "Title", "URL", "Status"],
datatype=["number", "str", "str", "str"],
interactive=False
)
refresh_button = gr.Button("Refresh Bookmark List")
with gr.Row():
index_input = gr.Number(label="Bookmark Index")
new_title_input = gr.Textbox(label="New Title")
new_url_input = gr.Textbox(label="New URL")
edit_button = gr.Button("Edit Bookmark")
delete_button = gr.Button("Delete Bookmark")
manage_output = gr.Textbox(label="Manage Output")
refresh_button.click(
display_bookmarks,
inputs=None,
outputs=bookmark_table
)
edit_button.click(
edit_bookmark,
inputs=[index_input, new_title_input, new_url_input],
outputs=manage_output
)
delete_button.click(
delete_bookmark,
inputs=index_input,
outputs=manage_output
)
demo.launch()
if __name__ == "__main__":
build_app()
|