Spaces:
Running
Running
File size: 9,037 Bytes
314bf31 a4303b2 314bf31 6952cd8 314bf31 5165383 314bf31 6952cd8 314bf31 5165383 314bf31 5165383 314bf31 5165383 314bf31 5165383 f745765 6952cd8 f745765 6952cd8 5165383 6952cd8 5165383 6952cd8 5165383 f745765 5165383 f745765 5165383 f745765 6952cd8 5165383 f745765 6952cd8 f745765 5165383 f745765 5165383 f745765 6952cd8 f745765 5165383 f745765 6952cd8 5165383 f745765 5165383 f745765 5165383 f745765 6952cd8 f745765 6952cd8 f745765 6952cd8 f745765 5165383 f745765 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# app.py
import gradio as gr
from bs4 import BeautifulSoup
import requests
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pandas as pd
# Initialize models and variables
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-6-6") # Using a smaller model for resource efficiency
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = None
bookmarks = []
fetch_cache = {}
def parse_bookmarks(file_content):
soup = BeautifulSoup(file_content, 'html.parser')
extracted_bookmarks = []
for link in soup.find_all('a'):
url = link.get('href')
title = link.text
if url and title:
extracted_bookmarks.append({'url': url, 'title': title})
return extracted_bookmarks
def fetch_url_info(bookmark):
url = bookmark['url']
if url in fetch_cache:
bookmark.update(fetch_cache[url])
return bookmark
try:
response = requests.get(url, timeout=5)
bookmark['etag'] = response.headers.get('ETag', 'N/A')
bookmark['status_code'] = response.status_code
if response.status_code >= 400:
bookmark['dead_link'] = True
bookmark['content'] = ''
else:
bookmark['dead_link'] = False
soup = BeautifulSoup(response.content, 'html.parser')
meta_tags = {meta.get('name', ''): meta.get('content', '') for meta in soup.find_all('meta')}
bookmark['meta_tags'] = meta_tags
bookmark['content'] = soup.get_text(separator=' ', strip=True)
except Exception as e:
bookmark['dead_link'] = True
bookmark['etag'] = 'N/A'
bookmark['status_code'] = 'N/A'
bookmark['meta_tags'] = {}
bookmark['content'] = ''
finally:
fetch_cache[url] = {
'etag': bookmark.get('etag'),
'status_code': bookmark.get('status_code'),
'dead_link': bookmark.get('dead_link'),
'meta_tags': bookmark.get('meta_tags'),
'content': bookmark.get('content'),
}
return bookmark
def generate_summary(bookmark):
content = bookmark.get('content', '')
if content:
# Limit content to first 500 characters to save resources
content = content[:500]
summary = summarizer(content, max_length=50, min_length=25, do_sample=False)
bookmark['summary'] = summary[0]['summary_text']
else:
bookmark['summary'] = 'No content available to summarize.'
return bookmark
def vectorize_and_index(bookmarks):
summaries = [bookmark['summary'] for bookmark in bookmarks]
embeddings = embedding_model.encode(summaries)
dimension = embeddings.shape[1]
faiss_idx = faiss.IndexFlatL2(dimension)
faiss_idx.add(np.array(embeddings))
return faiss_idx, embeddings
def display_bookmarks():
data = []
for i, bookmark in enumerate(bookmarks):
status = "Dead Link" if bookmark.get('dead_link') else "Active"
css_class = "dead-link" if bookmark.get('dead_link') else ""
data.append({
'Index': i,
'Title': bookmark['title'],
'URL': f"<a href='{bookmark['url']}' target='_blank'>{bookmark['url']}</a>",
'Status': status,
'ETag': bookmark.get('etag', 'N/A'),
'Summary': bookmark.get('summary', ''),
'css_class': css_class
})
df = pd.DataFrame(data)
return df
def process_uploaded_file(file):
global bookmarks, faiss_index
if file is None:
return "Please upload a bookmarks HTML file.", pd.DataFrame()
try:
# Decode the binary data to a string
file_content = file.decode('utf-8')
except UnicodeDecodeError:
return "Error decoding the file. Please ensure it's a valid HTML file.", pd.DataFrame()
bookmarks = parse_bookmarks(file_content)
if not bookmarks:
return "No bookmarks found in the uploaded file.", pd.DataFrame()
for bookmark in bookmarks:
fetch_url_info(bookmark)
generate_summary(bookmark)
faiss_index, embeddings = vectorize_and_index(bookmarks)
message = f"Successfully processed {len(bookmarks)} bookmarks."
bookmark_df = display_bookmarks()
return message, bookmark_df
def chatbot_response(user_query):
if faiss_index is None or not bookmarks:
return "No bookmarks available. Please upload and process your bookmarks first."
# Vectorize user query
user_embedding = embedding_model.encode([user_query])
D, I = faiss_index.search(np.array(user_embedding), k=5) # Retrieve top 5 matches
# Generate response
response = ""
for idx in I[0]:
if idx < len(bookmarks):
bookmark = bookmarks[idx]
response += f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}\n\n"
return response.strip()
def edit_bookmark(bookmark_idx, new_title, new_url):
global faiss_index
try:
bookmark_idx = int(bookmark_idx)
if bookmark_idx < 0 or bookmark_idx >= len(bookmarks):
return "Invalid bookmark index.", display_bookmarks()
bookmarks[bookmark_idx]['title'] = new_title
bookmarks[bookmark_idx]['url'] = new_url
fetch_url_info(bookmarks[bookmark_idx])
generate_summary(bookmarks[bookmark_idx])
# Rebuild the FAISS index
faiss_index, embeddings = vectorize_and_index(bookmarks)
message = "Bookmark updated successfully."
updated_df = display_bookmarks()
return message, updated_df
except Exception as e:
return f"Error: {str(e)}", display_bookmarks()
def delete_bookmark(bookmark_idx):
global faiss_index
try:
bookmark_idx = int(bookmark_idx)
if bookmark_idx < 0 or bookmark_idx >= len(bookmarks):
return "Invalid bookmark index.", display_bookmarks()
bookmarks.pop(bookmark_idx)
# Rebuild the FAISS index
if bookmarks:
faiss_index, embeddings = vectorize_and_index(bookmarks)
else:
faiss_index = None
message = "Bookmark deleted successfully."
updated_df = display_bookmarks()
return message, updated_df
except Exception as e:
return f"Error: {str(e)}", display_bookmarks()
def build_app():
with gr.Blocks(css="app.css") as demo:
gr.Markdown("<h1 style='text-align: center;'>Bookmark Manager App</h1>")
with gr.Tab("Upload and Process Bookmarks"):
upload = gr.File(label="Upload Bookmarks HTML File", type='binary')
process_button = gr.Button("Process Bookmarks")
output_text = gr.Textbox(label="Output")
bookmark_table = gr.HTML(label="Bookmarks")
def update_bookmark_table(file):
message, df = process_uploaded_file(file)
html_table = df.to_html(escape=False, index=False)
return message, html_table
process_button.click(
update_bookmark_table,
inputs=upload,
outputs=[output_text, bookmark_table]
)
with gr.Tab("Chat with Bookmarks"):
user_input = gr.Textbox(label="Ask about your bookmarks")
chat_output = gr.Textbox(label="Chatbot Response")
chat_button = gr.Button("Send")
chat_button.click(
chatbot_response,
inputs=user_input,
outputs=chat_output
)
with gr.Tab("Manage Bookmarks"):
manage_output = gr.Textbox(label="Manage Output")
bookmark_table_manage = gr.HTML(label="Bookmarks")
refresh_button = gr.Button("Refresh Bookmark List")
with gr.Row():
index_input = gr.Number(label="Bookmark Index")
new_title_input = gr.Textbox(label="New Title")
new_url_input = gr.Textbox(label="New URL")
edit_button = gr.Button("Edit Bookmark")
delete_button = gr.Button("Delete Bookmark")
def update_manage_table():
df = display_bookmarks()
html_table = df.to_html(escape=False, index=False)
return html_table
refresh_button.click(
update_manage_table,
inputs=None,
outputs=bookmark_table_manage
)
edit_button.click(
edit_bookmark,
inputs=[index_input, new_title_input, new_url_input],
outputs=[manage_output, bookmark_table_manage]
)
delete_button.click(
delete_bookmark,
inputs=index_input,
outputs=[manage_output, bookmark_table_manage]
)
# Initial load of the bookmarks table
bookmark_table_manage.value = update_manage_table()
demo.launch()
if __name__ == "__main__":
build_app()
|