File size: 9,037 Bytes
314bf31
a4303b2
314bf31
 
 
 
 
 
 
6952cd8
314bf31
 
5165383
314bf31
6952cd8
314bf31
 
 
 
5165383
 
 
 
 
 
 
 
314bf31
 
5165383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314bf31
 
5165383
 
 
 
 
 
 
 
 
314bf31
 
5165383
 
 
 
 
 
f745765
 
6952cd8
f745765
 
6952cd8
 
 
 
5165383
6952cd8
 
 
 
 
 
 
 
 
5165383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6952cd8
 
5165383
 
 
 
 
 
 
 
 
 
 
 
 
 
f745765
 
5165383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f745765
 
5165383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f745765
 
6952cd8
5165383
f745765
 
6952cd8
f745765
 
5165383
 
 
 
 
 
f745765
 
5165383
f745765
6952cd8
f745765
 
 
5165383
 
 
 
 
 
 
 
 
f745765
 
6952cd8
5165383
f745765
 
 
 
 
 
 
 
 
 
5165383
 
 
 
 
f745765
5165383
f745765
6952cd8
f745765
 
 
 
 
6952cd8
f745765
 
 
 
 
6952cd8
f745765
 
5165383
 
 
f745765
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# app.py

import gradio as gr
from bs4 import BeautifulSoup
import requests
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pandas as pd

# Initialize models and variables
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-6-6")  # Using a smaller model for resource efficiency
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = None
bookmarks = []
fetch_cache = {}

def parse_bookmarks(file_content):
    soup = BeautifulSoup(file_content, 'html.parser')
    extracted_bookmarks = []
    for link in soup.find_all('a'):
        url = link.get('href')
        title = link.text
        if url and title:
            extracted_bookmarks.append({'url': url, 'title': title})
    return extracted_bookmarks

def fetch_url_info(bookmark):
    url = bookmark['url']
    if url in fetch_cache:
        bookmark.update(fetch_cache[url])
        return bookmark

    try:
        response = requests.get(url, timeout=5)
        bookmark['etag'] = response.headers.get('ETag', 'N/A')
        bookmark['status_code'] = response.status_code

        if response.status_code >= 400:
            bookmark['dead_link'] = True
            bookmark['content'] = ''
        else:
            bookmark['dead_link'] = False
            soup = BeautifulSoup(response.content, 'html.parser')
            meta_tags = {meta.get('name', ''): meta.get('content', '') for meta in soup.find_all('meta')}
            bookmark['meta_tags'] = meta_tags
            bookmark['content'] = soup.get_text(separator=' ', strip=True)
    except Exception as e:
        bookmark['dead_link'] = True
        bookmark['etag'] = 'N/A'
        bookmark['status_code'] = 'N/A'
        bookmark['meta_tags'] = {}
        bookmark['content'] = ''
    finally:
        fetch_cache[url] = {
            'etag': bookmark.get('etag'),
            'status_code': bookmark.get('status_code'),
            'dead_link': bookmark.get('dead_link'),
            'meta_tags': bookmark.get('meta_tags'),
            'content': bookmark.get('content'),
        }
    return bookmark

def generate_summary(bookmark):
    content = bookmark.get('content', '')
    if content:
        # Limit content to first 500 characters to save resources
        content = content[:500]
        summary = summarizer(content, max_length=50, min_length=25, do_sample=False)
        bookmark['summary'] = summary[0]['summary_text']
    else:
        bookmark['summary'] = 'No content available to summarize.'
    return bookmark

def vectorize_and_index(bookmarks):
    summaries = [bookmark['summary'] for bookmark in bookmarks]
    embeddings = embedding_model.encode(summaries)
    dimension = embeddings.shape[1]
    faiss_idx = faiss.IndexFlatL2(dimension)
    faiss_idx.add(np.array(embeddings))
    return faiss_idx, embeddings

def display_bookmarks():
    data = []
    for i, bookmark in enumerate(bookmarks):
        status = "Dead Link" if bookmark.get('dead_link') else "Active"
        css_class = "dead-link" if bookmark.get('dead_link') else ""
        data.append({
            'Index': i,
            'Title': bookmark['title'],
            'URL': f"<a href='{bookmark['url']}' target='_blank'>{bookmark['url']}</a>",
            'Status': status,
            'ETag': bookmark.get('etag', 'N/A'),
            'Summary': bookmark.get('summary', ''),
            'css_class': css_class
        })
    df = pd.DataFrame(data)
    return df

def process_uploaded_file(file):
    global bookmarks, faiss_index
    if file is None:
        return "Please upload a bookmarks HTML file.", pd.DataFrame()
    try:
        # Decode the binary data to a string
        file_content = file.decode('utf-8')
    except UnicodeDecodeError:
        return "Error decoding the file. Please ensure it's a valid HTML file.", pd.DataFrame()

    bookmarks = parse_bookmarks(file_content)

    if not bookmarks:
        return "No bookmarks found in the uploaded file.", pd.DataFrame()

    for bookmark in bookmarks:
        fetch_url_info(bookmark)
        generate_summary(bookmark)

    faiss_index, embeddings = vectorize_and_index(bookmarks)
    message = f"Successfully processed {len(bookmarks)} bookmarks."
    bookmark_df = display_bookmarks()
    return message, bookmark_df

def chatbot_response(user_query):
    if faiss_index is None or not bookmarks:
        return "No bookmarks available. Please upload and process your bookmarks first."

    # Vectorize user query
    user_embedding = embedding_model.encode([user_query])
    D, I = faiss_index.search(np.array(user_embedding), k=5)  # Retrieve top 5 matches

    # Generate response
    response = ""
    for idx in I[0]:
        if idx < len(bookmarks):
            bookmark = bookmarks[idx]
            response += f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}\n\n"
    return response.strip()

def edit_bookmark(bookmark_idx, new_title, new_url):
    global faiss_index
    try:
        bookmark_idx = int(bookmark_idx)
        if bookmark_idx < 0 or bookmark_idx >= len(bookmarks):
            return "Invalid bookmark index.", display_bookmarks()
        bookmarks[bookmark_idx]['title'] = new_title
        bookmarks[bookmark_idx]['url'] = new_url
        fetch_url_info(bookmarks[bookmark_idx])
        generate_summary(bookmarks[bookmark_idx])
        # Rebuild the FAISS index
        faiss_index, embeddings = vectorize_and_index(bookmarks)
        message = "Bookmark updated successfully."
        updated_df = display_bookmarks()
        return message, updated_df
    except Exception as e:
        return f"Error: {str(e)}", display_bookmarks()

def delete_bookmark(bookmark_idx):
    global faiss_index
    try:
        bookmark_idx = int(bookmark_idx)
        if bookmark_idx < 0 or bookmark_idx >= len(bookmarks):
            return "Invalid bookmark index.", display_bookmarks()
        bookmarks.pop(bookmark_idx)
        # Rebuild the FAISS index
        if bookmarks:
            faiss_index, embeddings = vectorize_and_index(bookmarks)
        else:
            faiss_index = None
        message = "Bookmark deleted successfully."
        updated_df = display_bookmarks()
        return message, updated_df
    except Exception as e:
        return f"Error: {str(e)}", display_bookmarks()

def build_app():
    with gr.Blocks(css="app.css") as demo:
        gr.Markdown("<h1 style='text-align: center;'>Bookmark Manager App</h1>")

        with gr.Tab("Upload and Process Bookmarks"):
            upload = gr.File(label="Upload Bookmarks HTML File", type='binary')
            process_button = gr.Button("Process Bookmarks")
            output_text = gr.Textbox(label="Output")
            bookmark_table = gr.HTML(label="Bookmarks")

            def update_bookmark_table(file):
                message, df = process_uploaded_file(file)
                html_table = df.to_html(escape=False, index=False)
                return message, html_table

            process_button.click(
                update_bookmark_table,
                inputs=upload,
                outputs=[output_text, bookmark_table]
            )

        with gr.Tab("Chat with Bookmarks"):
            user_input = gr.Textbox(label="Ask about your bookmarks")
            chat_output = gr.Textbox(label="Chatbot Response")
            chat_button = gr.Button("Send")

            chat_button.click(
                chatbot_response,
                inputs=user_input,
                outputs=chat_output
            )

        with gr.Tab("Manage Bookmarks"):
            manage_output = gr.Textbox(label="Manage Output")
            bookmark_table_manage = gr.HTML(label="Bookmarks")
            refresh_button = gr.Button("Refresh Bookmark List")

            with gr.Row():
                index_input = gr.Number(label="Bookmark Index")
                new_title_input = gr.Textbox(label="New Title")
                new_url_input = gr.Textbox(label="New URL")

            edit_button = gr.Button("Edit Bookmark")
            delete_button = gr.Button("Delete Bookmark")

            def update_manage_table():
                df = display_bookmarks()
                html_table = df.to_html(escape=False, index=False)
                return html_table

            refresh_button.click(
                update_manage_table,
                inputs=None,
                outputs=bookmark_table_manage
            )

            edit_button.click(
                edit_bookmark,
                inputs=[index_input, new_title_input, new_url_input],
                outputs=[manage_output, bookmark_table_manage]
            )

            delete_button.click(
                delete_bookmark,
                inputs=index_input,
                outputs=[manage_output, bookmark_table_manage]
            )

            # Initial load of the bookmarks table
            bookmark_table_manage.value = update_manage_table()

    demo.launch()

if __name__ == "__main__":
    build_app()