File size: 32,127 Bytes
314bf31
c6d370d
314bf31
 
e985ab1
 
 
0b28455
 
59084a2
0eb712b
880f9ee
85c9bd6
61242f1
e44b0c3
cdd7269
 
1e99b99
880f9ee
61242f1
880f9ee
61242f1
cdd7269
 
61242f1
 
cdd7269
 
61242f1
 
cdd7269
 
61242f1
314bf31
 
880f9ee
314bf31
18ec658
e985ab1
314bf31
 
59084a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd9d0c4
 
59084a2
 
1e99b99
 
61242f1
1e99b99
 
 
 
 
9efe9bb
 
e44b0c3
 
 
 
 
 
 
 
 
 
8f32801
 
 
813f784
9efe9bb
813f784
9efe9bb
f42e018
 
3f6cb23
fb6f5e6
 
813f784
3f6cb23
fb6f5e6
 
 
 
813f784
fb6f5e6
 
3f6cb23
813f784
 
3f6cb23
fb6f5e6
 
 
 
 
3f6cb23
9efe9bb
 
 
 
 
 
 
 
 
 
3f6cb23
f42e018
 
3f6cb23
813f784
9efe9bb
f42e018
9efe9bb
3f6cb23
fb6f5e6
813f784
 
 
 
 
 
 
3f6cb23
ad8e10f
813f784
 
 
3f6cb23
813f784
 
 
 
 
3f6cb23
813f784
ad8e10f
8f32801
 
7b16cc6
8f32801
9efe9bb
 
fb6f5e6
9efe9bb
813f784
3f6cb23
9efe9bb
3b1a6a1
 
2303217
 
 
 
 
 
 
 
fb6f5e6
2303217
fb6f5e6
2303217
fb6f5e6
2303217
fb6f5e6
2303217
fb6f5e6
2303217
fb6f5e6
85352fd
fb6f5e6
e44b0c3
 
 
 
 
fb6f5e6
e44b0c3
fb6f5e6
 
 
 
 
 
 
 
 
 
1dbb950
fb6f5e6
 
 
 
 
1dbb950
fb6f5e6
 
 
 
85352fd
3f6cb23
85352fd
3f6cb23
85352fd
2303217
1dbb950
3f6cb23
 
 
1dbb950
3f6cb23
 
 
8f32801
 
 
e44b0c3
 
 
 
 
 
1dbb950
e44b0c3
 
 
 
8f32801
e44b0c3
 
8f32801
e44b0c3
 
 
 
3f6cb23
 
85352fd
 
3f6cb23
 
 
 
9efe9bb
b8183dd
fb6f5e6
813f784
 
8f32801
 
7b16cc6
8f32801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
813f784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8183dd
813f784
314bf31
0b28455
b47d5fe
813f784
b47d5fe
5165383
 
 
 
 
8f32801
e44b0c3
8f32801
1dbb950
 
e44b0c3
 
 
8f32801
e44b0c3
 
1dbb950
e44b0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f32801
 
 
 
 
 
 
 
e44b0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dbb950
e44b0c3
5165383
314bf31
370367a
b47d5fe
1dbb950
b47d5fe
370367a
 
8f32801
e44b0c3
813f784
370367a
 
 
 
813f784
370367a
 
b8183dd
370367a
 
8f32801
b47d5fe
8f32801
b47d5fe
8f32801
 
 
 
7b16cc6
 
 
 
8f32801
 
 
370367a
 
b47d5fe
3f6cb23
b47d5fe
370367a
 
813f784
370367a
 
3f6cb23
 
 
 
 
 
370367a
b8183dd
370367a
 
 
b47d5fe
813f784
b47d5fe
370367a
 
 
b47d5fe
370367a
1dbb950
813f784
 
1dbb950
 
 
 
370367a
1dbb950
813f784
370367a
 
1dbb950
 
 
 
 
 
3f6cb23
 
 
 
 
 
 
370367a
813f784
370367a
813f784
370367a
 
 
813f784
370367a
 
 
 
 
813f784
370367a
813f784
a3d35f9
813f784
b47d5fe
370367a
 
3f6cb23
370367a
813f784
 
 
370367a
 
 
b8183dd
813f784
 
370367a
 
 
b8183dd
813f784
 
370367a
813f784
 
 
3f6cb23
 
 
 
813f784
370367a
 
813f784
b8183dd
813f784
370367a
8f32801
 
 
 
 
 
f42e018
813f784
3f6cb23
ad8e10f
b8183dd
813f784
 
 
 
3f6cb23
813f784
 
3f6cb23
1dbb950
813f784
 
370367a
7b16cc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370367a
 
b47d5fe
813f784
b47d5fe
370367a
 
 
813f784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f6cb23
813f784
 
 
a3d35f9
813f784
 
 
a3d35f9
813f784
 
 
 
 
 
 
a3d35f9
813f784
 
 
a3d35f9
813f784
 
 
 
 
a3d35f9
813f784
a3d35f9
813f784
 
a3d35f9
370367a
 
 
 
b8183dd
370367a
f745765
 
8f32801
 
3f6cb23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
# app.py

import gradio as gr
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import asyncio
import aiohttp
import re
import base64
import logging
import os
import sys
import time

# Import OpenAI library
import openai

# Set up logging to output to the console
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

# Create a console handler
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.INFO)

# Create a formatter and set it for the handler
formatter = logging.Formatter('%(asctime)s %(levelname)s %(name)s %(message)s')
console_handler.setFormatter(formatter)

# Add the handler to the logger
logger.addHandler(console_handler)

# Initialize models and variables
logger.info("Initializing models and variables")
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = None
bookmarks = []
fetch_cache = {}

# Define the categories
CATEGORIES = [
    "Social Media",
    "News and Media",
    "Education and Learning",
    "Entertainment",
    "Shopping and E-commerce",
    "Finance and Banking",
    "Technology",
    "Health and Fitness",
    "Travel and Tourism",
    "Food and Recipes",
    "Sports",
    "Arts and Culture",
    "Government and Politics",
    "Business and Economy",
    "Science and Research",
    "Personal Blogs and Journals",
    "Job Search and Careers",
    "Music and Audio",
    "Videos and Movies",
    "Reference and Knowledge Bases",
    "Dead Link",
    "Uncategorized",
]

# Set up Groq Cloud API key and base URL
GROQ_API_KEY = os.getenv('GROQ_API_KEY')

if not GROQ_API_KEY:
    logger.error("GROQ_API_KEY environment variable not set.")

# Set OpenAI API key and base URL to use Groq Cloud API
openai.api_key = GROQ_API_KEY
openai.api_base = "https://api.groq.com/openai/v1"

def extract_retry_after(error_message):
    """
    Extract the retry-after time from the rate limit error message.
    """
    match = re.search(r'Please try again in (\d+\.?\d*)s', error_message)
    if match:
        return float(match.group(1)) + 1  # Add a buffer of 1 second
    else:
        return 5  # Default retry after 5 seconds

def exponential_backoff(retries):
    return min(60, (2 ** retries))  # Cap the wait time at 60 seconds

def extract_main_content(soup):
    """
    Extract the main content from a webpage while filtering out boilerplate content.
    """
    if not soup:
        return ""

    # Remove unwanted elements
    for element in soup(['script', 'style', 'header', 'footer', 'nav', 'aside', 'form', 'noscript']):
        element.decompose()

    # Extract text from <p> tags
    p_tags = soup.find_all('p')
    if p_tags:
        content = ' '.join([p.get_text(strip=True, separator=' ') for p in p_tags])
    else:
        # Fallback to body content
        content = soup.get_text(separator=' ', strip=True)

    # Clean up the text
    content = re.sub(r'\s+', ' ', content)  # Remove multiple spaces

    # Truncate content to a reasonable length (e.g., 1500 words)
    words = content.split()
    if len(words) > 1500:
        content = ' '.join(words[:1500])

    return content

def get_page_metadata(soup):
    """
    Extract metadata from the webpage including title, description, and keywords.
    """
    metadata = {
        'title': '',
        'description': '',
        'keywords': ''
    }

    if not soup:
        return metadata

    # Get title
    title_tag = soup.find('title')
    if title_tag and title_tag.string:
        metadata['title'] = title_tag.string.strip()

    # Get meta description
    meta_desc = (
        soup.find('meta', attrs={'name': 'description'}) or
        soup.find('meta', attrs={'property': 'og:description'}) or
        soup.find('meta', attrs={'name': 'twitter:description'})
    )
    if meta_desc:
        metadata['description'] = meta_desc.get('content', '').strip()

    # Get meta keywords
    meta_keywords = soup.find('meta', attrs={'name': 'keywords'})
    if meta_keywords:
        metadata['keywords'] = meta_keywords.get('content', '').strip()

    # Get OG title if main title is empty
    if not metadata['title']:
        og_title = soup.find('meta', attrs={'property': 'og:title'})
        if og_title:
            metadata['title'] = og_title.get('content', '').strip()

    return metadata

async def generate_summary_async(bookmark):
    async with llm_semaphore:
        await asyncio.get_event_loop().run_in_executor(None, generate_summary, bookmark)

def generate_summary(bookmark):
    """
    Generate a concise summary for a bookmark using available content and LLM via the Groq Cloud API.
    """
    logger.info(f"Generating summary for bookmark: {bookmark.get('url')}")

    try:
        html_content = bookmark.get('html_content', '')

        # Get the HTML soup object from the bookmark
        soup = BeautifulSoup(html_content, 'html.parser')

        # Extract metadata and main content
        metadata = get_page_metadata(soup)
        main_content = extract_main_content(soup)

        # Prepare content for the prompt
        content_parts = []
        if metadata['title']:
            content_parts.append(f"Title: {metadata['title']}")
        if metadata['description']:
            content_parts.append(f"Description: {metadata['description']}")
        if metadata['keywords']:
            content_parts.append(f"Keywords: {metadata['keywords']}")
        if main_content:
            content_parts.append(f"Main Content: {main_content}")

        content_text = '\n'.join(content_parts)

        # Detect insufficient or erroneous content
        error_keywords = ['Access Denied', 'Security Check', 'Cloudflare', 'captcha', 'unusual traffic']
        if not content_text or len(content_text.split()) < 50:
            use_prior_knowledge = True
            logger.info(f"Content for {bookmark.get('url')} is insufficient. Instructing LLM to use prior knowledge.")
        elif any(keyword.lower() in content_text.lower() for keyword in error_keywords):
            use_prior_knowledge = True
            logger.info(f"Content for {bookmark.get('url')} contains error messages. Instructing LLM to use prior knowledge.")
        else:
            use_prior_knowledge = False

        if use_prior_knowledge:
            # Construct prompt to use prior knowledge
            prompt = f"""
You are a knowledgeable assistant.

The user provided a URL: {bookmark.get('url')}

Please provide a concise summary in **no more than two sentences** about this website based on your knowledge.

Focus on:
- The main purpose or topic of the website.
- Key information or features.

Be concise and objective.
"""
        else:
            # Construct the prompt with the extracted content
            prompt = f"""
You are a helpful assistant that creates concise webpage summaries.

Analyze the following webpage content:

{content_text}

Provide a concise summary in **no more than two sentences** focusing on:
- The main purpose or topic of the page.
- Key information or features.

Be concise and objective.
"""

        # Call the LLM via Groq Cloud API
        retries = 0
        max_retries = 5
        while retries <= max_retries:
            try:
                response = openai.ChatCompletion.create(
                    model='llama-3.1-70b-versatile',
                    messages=[
                        {"role": "user", "content": prompt}
                    ],
                    max_tokens=100,  # Reduced max tokens
                    temperature=0.5,
                )
                break  # Exit loop if successful
            except openai.error.RateLimitError as e:
                retry_after = extract_retry_after(str(e)) or exponential_backoff(retries)
                logger.warning(f"Rate limit exceeded. Retrying after {retry_after} seconds.")
                time.sleep(retry_after)
                retries += 1
            except Exception as e:
                logger.error(f"Error generating summary: {e}", exc_info=True)
                bookmark['summary'] = 'No summary available.'
                return bookmark

        summary = response['choices'][0]['message']['content'].strip()
        if not summary:
            raise ValueError("Empty summary received from the model.")
        logger.info("Successfully generated LLM summary")
        bookmark['summary'] = summary
        return bookmark

    except Exception as e:
        logger.error(f"Error generating summary: {e}", exc_info=True)
        bookmark['summary'] = 'No summary available.'
        return bookmark

async def assign_category_async(bookmark):
    async with llm_semaphore:
        await asyncio.get_event_loop().run_in_executor(None, assign_category, bookmark)

def assign_category(bookmark):
    """
    Assign a category to a bookmark using the LLM based on its summary via the Groq Cloud API.
    """
    if bookmark.get('dead_link'):
        bookmark['category'] = 'Dead Link'
        logger.info(f"Assigned category 'Dead Link' to bookmark: {bookmark.get('url')}")
        return bookmark

    summary = bookmark.get('summary', '')
    if not summary:
        bookmark['category'] = 'Uncategorized'
        return bookmark

    # Prepare the prompt
    categories_str = ', '.join([f'"{cat}"' for cat in CATEGORIES if cat != 'Dead Link'])
    prompt = f"""
You are a helpful assistant that categorizes webpages.

Based on the following summary, assign the most appropriate category from the list below.

Summary:
{summary}

Categories:
{categories_str}

Respond with only the category name.
"""

    retries = 0
    max_retries = 5
    while retries <= max_retries:
        try:
            response = openai.ChatCompletion.create(
                model='llama-3.1-70b-versatile',
                messages=[
                    {"role": "user", "content": prompt}
                ],
                max_tokens=10,
                temperature=0,
            )
            break  # Exit loop if successful
        except openai.error.RateLimitError as e:
            retry_after = extract_retry_after(str(e)) or exponential_backoff(retries)
            logger.warning(f"Rate limit exceeded. Retrying after {retry_after} seconds.")
            time.sleep(retry_after)
            retries += 1
        except Exception as e:
            logger.error(f"Error assigning category: {e}", exc_info=True)
            bookmark['category'] = 'Uncategorized'
            return bookmark

    category = response['choices'][0]['message']['content'].strip().strip('"')

    # Validate the category
    if category in CATEGORIES:
        bookmark['category'] = category
        logger.info(f"Assigned category '{category}' to bookmark: {bookmark.get('url')}")
    else:
        bookmark['category'] = 'Uncategorized'
        logger.warning(f"Invalid category '{category}' returned by LLM for bookmark: {bookmark.get('url')}")

    return bookmark

def parse_bookmarks(file_content):
    """
    Parse bookmarks from HTML file.
    """
    logger.info("Parsing bookmarks")
    try:
        soup = BeautifulSoup(file_content, 'html.parser')
        extracted_bookmarks = []
        for link in soup.find_all('a'):
            url = link.get('href')
            title = link.text.strip()
            if url and title:
                extracted_bookmarks.append({'url': url, 'title': title})
        logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
        return extracted_bookmarks
    except Exception as e:
        logger.error("Error parsing bookmarks: %s", e, exc_info=True)
        raise

async def fetch_url_info(session, bookmark):
    """
    Fetch information about a URL asynchronously.
    """
    url = bookmark['url']
    if url in fetch_cache:
        bookmark.update(fetch_cache[url])
        return bookmark

    max_retries = 0  # No retries
    retries = 0
    timeout_duration = 5  # Reduced timeout

    while retries <= max_retries:
        try:
            logger.info(f"Fetching URL info for: {url} (Attempt {retries + 1})")
            headers = {
                'User-Agent': 'Mozilla/5.0',
                'Accept-Language': 'en-US,en;q=0.9',
            }
            async with session.get(url, timeout=timeout_duration, headers=headers, ssl=False, allow_redirects=True) as response:
                bookmark['etag'] = response.headers.get('ETag', 'N/A')
                bookmark['status_code'] = response.status

                content = await response.text()
                logger.info(f"Fetched content length for {url}: {len(content)} characters")

                # Handle status codes
                if response.status >= 500:
                    # Server error, consider as dead link
                    bookmark['dead_link'] = True
                    bookmark['description'] = ''
                    bookmark['html_content'] = ''
                    logger.warning(f"Dead link detected: {url} with status {response.status}")
                else:
                    bookmark['dead_link'] = False
                    bookmark['html_content'] = content
                    bookmark['description'] = ''
                    logger.info(f"Fetched information for {url}")
                break  # Exit loop if successful

        except asyncio.exceptions.TimeoutError:
            bookmark['dead_link'] = False  # Mark as 'Unknown' instead of 'Dead'
            bookmark['etag'] = 'N/A'
            bookmark['status_code'] = 'Timeout'
            bookmark['description'] = ''
            bookmark['html_content'] = ''
            bookmark['slow_link'] = True  # Custom flag to indicate slow response
            logger.warning(f"Timeout while fetching {url}. Marking as 'Slow'.")
            break  # Exit loop after timeout
        except Exception as e:
            bookmark['dead_link'] = True
            bookmark['etag'] = 'N/A'
            bookmark['status_code'] = 'Error'
            bookmark['description'] = ''
            bookmark['html_content'] = ''
            logger.error(f"Error fetching URL info for {url}: {e}", exc_info=True)
            break
        finally:
            fetch_cache[url] = {
                'etag': bookmark.get('etag'),
                'status_code': bookmark.get('status_code'),
                'dead_link': bookmark.get('dead_link'),
                'description': bookmark.get('description'),
                'html_content': bookmark.get('html_content', ''),
                'slow_link': bookmark.get('slow_link', False),
            }
    return bookmark

async def process_bookmarks_async(bookmarks_list):
    """
    Fetch all bookmarks asynchronously.
    """
    logger.info("Processing bookmarks asynchronously")
    try:
        connector = aiohttp.TCPConnector(limit=10)  # Increase limit if necessary
        timeout = aiohttp.ClientTimeout(total=60)  # Set timeout
        async with aiohttp.ClientSession(connector=connector, timeout=timeout) as session:
            tasks = []
            for bookmark in bookmarks_list:
                task = asyncio.ensure_future(fetch_url_info(session, bookmark))
                tasks.append(task)
            await asyncio.gather(*tasks)
        logger.info("Completed processing bookmarks asynchronously")
    except Exception as e:
        logger.error(f"Error in asynchronous processing of bookmarks: {e}", exc_info=True)
        raise

async def process_bookmarks_llm(bookmarks_list):
    """
    Process bookmarks asynchronously for LLM API calls.
    """
    logger.info("Processing bookmarks with LLM asynchronously")
    tasks = []
    for bookmark in bookmarks_list:
        tasks.append(generate_summary_async(bookmark))
    await asyncio.gather(*tasks)

    tasks = []
    for bookmark in bookmarks_list:
        tasks.append(assign_category_async(bookmark))
    await asyncio.gather(*tasks)
    logger.info("Completed LLM processing of bookmarks")

def vectorize_and_index(bookmarks_list):
    """
    Create vector embeddings for bookmarks and build FAISS index with ID mapping.
    """
    logger.info("Vectorizing summaries and building FAISS index")
    try:
        summaries = [bookmark['summary'] for bookmark in bookmarks_list]
        embeddings = embedding_model.encode(summaries)
        dimension = embeddings.shape[1]
        index = faiss.IndexIDMap(faiss.IndexFlatL2(dimension))
        # Assign unique IDs to each bookmark
        ids = np.array([bookmark['id'] for bookmark in bookmarks_list], dtype=np.int64)
        index.add_with_ids(np.array(embeddings).astype('float32'), ids)
        logger.info("FAISS index built successfully with IDs")
        return index
    except Exception as e:
        logger.error(f"Error in vectorizing and indexing: {e}", exc_info=True)
        raise

def display_bookmarks():
    """
    Generate HTML display for bookmarks.
    """
    logger.info("Generating HTML display for bookmarks")
    cards = ''
    for i, bookmark in enumerate(bookmarks):
        index = i + 1
        if bookmark.get('dead_link'):
            status = "❌ Dead Link"
            card_style = "border: 2px solid var(--error-color);"
            text_style = "color: var(--error-color);"
        elif bookmark.get('slow_link'):
            status = "⏳ Slow Response"
            card_style = "border: 2px solid orange;"
            text_style = "color: orange;"
        else:
            status = "βœ… Active"
            card_style = "border: 2px solid var(--success-color);"
            text_style = "color: var(--text-color);"

        title = bookmark['title']
        url = bookmark['url']
        etag = bookmark.get('etag', 'N/A')
        summary = bookmark.get('summary', '')
        category = bookmark.get('category', 'Uncategorized')

        # Escape HTML content to prevent XSS attacks
        from html import escape
        title = escape(title)
        url = escape(url)
        summary = escape(summary)
        category = escape(category)

        card_html = f'''
        <div class="card" style="{card_style}; padding: 10px; margin: 10px; border-radius: 5px;">
            <div class="card-content">
                <h3 style="{text_style}">{index}. {title} {status}</h3>
                <p style="{text_style}"><strong>Category:</strong> {category}</p>
                <p style="{text_style}"><strong>URL:</strong> <a href="{url}" target="_blank" style="{text_style}">{url}</a></p>
                <p style="{text_style}"><strong>ETag:</strong> {etag}</p>
                <p style="{text_style}"><strong>Summary:</strong> {summary}</p>
            </div>
        </div>
        '''
        cards += card_html
    logger.info("HTML display generated")
    return cards

def process_uploaded_file(file):
    """
    Process the uploaded bookmarks file.
    """
    global bookmarks, faiss_index
    logger.info("Processing uploaded file")

    if file is None:
        logger.warning("No file uploaded")
        return "Please upload a bookmarks HTML file.", '', gr.update(choices=[]), display_bookmarks()

    try:
        file_content = file.decode('utf-8')
    except UnicodeDecodeError as e:
        logger.error(f"Error decoding the file: {e}", exc_info=True)
        return "Error decoding the file. Please ensure it's a valid HTML file.", '', gr.update(choices=[]), display_bookmarks()

    try:
        bookmarks = parse_bookmarks(file_content)
    except Exception as e:
        logger.error(f"Error parsing bookmarks: {e}", exc_info=True)
        return "Error parsing the bookmarks HTML file.", '', gr.update(choices=[]), display_bookmarks()

    if not bookmarks:
        logger.warning("No bookmarks found in the uploaded file")
        return "No bookmarks found in the uploaded file.", '', gr.update(choices=[]), display_bookmarks()

    # Assign unique IDs to bookmarks
    for idx, bookmark in enumerate(bookmarks):
        bookmark['id'] = idx

    # Asynchronously fetch bookmark info
    try:
        asyncio.run(process_bookmarks_async(bookmarks))
    except Exception as e:
        logger.error(f"Error processing bookmarks asynchronously: {e}", exc_info=True)
        return "Error processing bookmarks.", '', gr.update(choices=[]), display_bookmarks()

    # Asynchronously process bookmarks with LLM
    try:
        asyncio.run(process_bookmarks_llm(bookmarks))
    except Exception as e:
        logger.error(f"Error processing bookmarks with LLM: {e}", exc_info=True)
        return "Error processing bookmarks with LLM.", '', gr.update(choices=[]), display_bookmarks()

    try:
        faiss_index = vectorize_and_index(bookmarks)
    except Exception as e:
        logger.error(f"Error building FAISS index: {e}", exc_info=True)
        return "Error building search index.", '', gr.update(choices=[]), display_bookmarks()

    message = f"βœ… Successfully processed {len(bookmarks)} bookmarks."
    logger.info(message)

    # Generate displays and updates
    bookmark_html = display_bookmarks()
    choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
               for i, bookmark in enumerate(bookmarks)]

    return message, bookmark_html, gr.update(choices=choices), bookmark_html

def delete_selected_bookmarks(selected_indices):
    """
    Delete selected bookmarks and remove their vectors from the FAISS index.
    """
    global bookmarks, faiss_index
    if not selected_indices:
        return "⚠️ No bookmarks selected.", gr.update(choices=[]), display_bookmarks()

    ids_to_delete = []
    indices_to_delete = []
    for s in selected_indices:
        idx = int(s.split('.')[0]) - 1
        if 0 <= idx < len(bookmarks):
            bookmark_id = bookmarks[idx]['id']
            ids_to_delete.append(bookmark_id)
            indices_to_delete.append(idx)
            logger.info(f"Deleting bookmark at index {idx + 1}")

    # Remove vectors from FAISS index
    if faiss_index is not None and ids_to_delete:
        faiss_index.remove_ids(np.array(ids_to_delete, dtype=np.int64))

    # Remove bookmarks from the list (reverse order to avoid index shifting)
    for idx in sorted(indices_to_delete, reverse=True):
        bookmarks.pop(idx)

    message = "πŸ—‘οΈ Selected bookmarks deleted successfully."
    logger.info(message)
    choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
               for i, bookmark in enumerate(bookmarks)]

    return message, gr.update(choices=choices), display_bookmarks()

def edit_selected_bookmarks_category(selected_indices, new_category):
    """
    Edit category of selected bookmarks.
    """
    if not selected_indices:
        return "⚠️ No bookmarks selected.", gr.update(choices=[]), display_bookmarks()
    if not new_category:
        return "⚠️ No new category selected.", gr.update(choices=[]), display_bookmarks()

    indices = [int(s.split('.')[0])-1 for s in selected_indices]
    for idx in indices:
        if 0 <= idx < len(bookmarks):
            bookmarks[idx]['category'] = new_category
            logger.info(f"Updated category for bookmark {idx + 1} to {new_category}")

    message = "✏️ Category updated for selected bookmarks."
    logger.info(message)

    # Update choices and display
    choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
              for i, bookmark in enumerate(bookmarks)]

    return message, gr.update(choices=choices), display_bookmarks()

def export_bookmarks():
    """
    Export bookmarks to HTML file.
    """
    if not bookmarks:
        logger.warning("No bookmarks to export")
        return "⚠️ No bookmarks to export."

    try:
        logger.info("Exporting bookmarks to HTML")
        soup = BeautifulSoup("<!DOCTYPE NETSCAPE-Bookmark-file-1><Title>Bookmarks</Title><H1>Bookmarks</H1>", 'html.parser')
        dl = soup.new_tag('DL')
        for bookmark in bookmarks:
            dt = soup.new_tag('DT')
            a = soup.new_tag('A', href=bookmark['url'])
            a.string = bookmark['title']
            dt.append(a)
            dl.append(dt)
        soup.append(dl)
        html_content = str(soup)
        b64 = base64.b64encode(html_content.encode()).decode()
        href = f'data:text/html;base64,{b64}'
        logger.info("Bookmarks exported successfully")
        return f'<a href="{href}" download="bookmarks.html">πŸ’Ύ Download Exported Bookmarks</a>'
    except Exception as e:
        logger.error(f"Error exporting bookmarks: {e}", exc_info=True)
        return "⚠️ Error exporting bookmarks."

def chatbot_response(user_query):
    """
    Generate chatbot response using the FAISS index and embeddings.
    """
    if not bookmarks or faiss_index is None:
        logger.warning("No bookmarks available for chatbot")
        return "⚠️ No bookmarks available. Please upload and process your bookmarks first."

    logger.info(f"Chatbot received query: {user_query}")

    try:
        # Encode the user query
        query_vector = embedding_model.encode([user_query]).astype('float32')

        # Search the FAISS index
        k = 5  # Number of results to return
        distances, ids = faiss_index.search(query_vector, k)
        ids = ids.flatten()

        # Retrieve the bookmarks
        id_to_bookmark = {bookmark['id']: bookmark for bookmark in bookmarks}
        matching_bookmarks = [id_to_bookmark.get(id) for id in ids if id in id_to_bookmark]

        if not matching_bookmarks:
            return "No relevant bookmarks found for your query."

        # Format the response
        bookmarks_info = "\n".join([
            f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}"
            for bookmark in matching_bookmarks
        ])

        # Use the LLM via Groq Cloud API to generate a response
        prompt = f"""
A user asked: "{user_query}"

Based on the bookmarks below, provide a helpful answer to the user's query, referencing the relevant bookmarks.

Bookmarks:
{bookmarks_info}

Provide a concise and helpful response.
"""

        retries = 0
        max_retries = 5
        while retries <= max_retries:
            try:
                response = openai.ChatCompletion.create(
                    model='llama-3.1-70b-versatile',
                    messages=[
                        {"role": "user", "content": prompt}
                    ],
                    max_tokens=500,
                    temperature=0.7,
                )
                break  # Exit loop if successful
            except openai.error.RateLimitError as e:
                retry_after = extract_retry_after(str(e)) or exponential_backoff(retries)
                logger.warning(f"Rate limit exceeded. Retrying after {retry_after} seconds.")
                time.sleep(retry_after)
                retries += 1
            except Exception as e:
                error_message = f"⚠️ Error processing your query: {str(e)}"
                logger.error(error_message, exc_info=True)
                return error_message

        answer = response['choices'][0]['message']['content'].strip()
        logger.info("Chatbot response generated using Groq Cloud API")
        return answer

    except Exception as e:
        error_message = f"⚠️ Error processing your query: {str(e)}"
        logger.error(error_message, exc_info=True)
        return error_message

def build_app():
    """
    Build and launch the Gradio app.
    """
    try:
        logger.info("Building Gradio app")
        with gr.Blocks(css="app.css") as demo:
            # General Overview
            gr.Markdown("""
            # πŸ“š SmartMarks - AI Browser Bookmarks Manager

            Welcome to **SmartMarks**, your intelligent assistant for managing browser bookmarks. SmartMarks leverages AI to help you organize, search, and interact with your bookmarks seamlessly.

            ---

            ## πŸš€ **How to Use SmartMarks**

            SmartMarks is divided into three main sections:

            1. **πŸ“‚ Upload and Process Bookmarks:** Import your existing bookmarks and let SmartMarks analyze and categorize them for you.
            2. **πŸ’¬ Chat with Bookmarks:** Interact with your bookmarks using natural language queries to find relevant links effortlessly.
            3. **πŸ› οΈ Manage Bookmarks:** View, edit, delete, and export your bookmarks with ease.
            """)

            # Upload and Process Bookmarks Tab
            with gr.Tab("Upload and Process Bookmarks"):
                gr.Markdown("""
                ## πŸ“‚ **Upload and Process Bookmarks**

                ### πŸ“ **Steps:**
                1. Click on the "Upload Bookmarks HTML File" button
                2. Select your bookmarks file
                3. Click "Process Bookmarks" to analyze and organize your bookmarks
                """)

                upload = gr.File(label="πŸ“ Upload Bookmarks HTML File", type='binary')
                process_button = gr.Button("βš™οΈ Process Bookmarks")
                output_text = gr.Textbox(label="βœ… Output", interactive=False)
                bookmark_display = gr.HTML(label="πŸ“„ Processed Bookmarks")

            # Chat with Bookmarks Tab
            with gr.Tab("Chat with Bookmarks"):
                gr.Markdown("""
                ## πŸ’¬ **Chat with Bookmarks**

                Ask questions about your bookmarks and get relevant results.
                """)

                user_input = gr.Textbox(
                    label="✍️ Ask about your bookmarks",
                    placeholder="e.g., Do I have any bookmarks about AI?"
                )
                chat_button = gr.Button("πŸ“¨ Send")
                chat_output = gr.Textbox(label="πŸ’¬ Response", interactive=False)

            # Manage Bookmarks Tab
            with gr.Tab("Manage Bookmarks"):
                gr.Markdown("""
                ## πŸ› οΈ **Manage Bookmarks**
                Select bookmarks to delete or edit their categories.
                """)

                manage_output = gr.Textbox(label="πŸ”„ Status", interactive=False)
                bookmark_selector = gr.CheckboxGroup(
                    label="βœ… Select Bookmarks",
                    choices=[]
                )
                new_category = gr.Dropdown(
                    label="πŸ†• New Category",
                    choices=CATEGORIES,
                    value="Uncategorized"
                )
                bookmark_display_manage = gr.HTML(label="πŸ“„ Bookmarks")

                with gr.Row():
                    delete_button = gr.Button("πŸ—‘οΈ Delete Selected")
                    edit_category_button = gr.Button("✏️ Edit Category")
                    export_button = gr.Button("πŸ’Ύ Export")

                download_link = gr.HTML(label="πŸ“₯ Download")

            # Set up event handlers
            process_button.click(
                process_uploaded_file,
                inputs=upload,
                outputs=[output_text, bookmark_display, bookmark_selector, bookmark_display_manage]
            )

            chat_button.click(
                chatbot_response,
                inputs=user_input,
                outputs=chat_output
            )

            delete_button.click(
                delete_selected_bookmarks,
                inputs=bookmark_selector,
                outputs=[manage_output, bookmark_selector, bookmark_display_manage]
            )

            edit_category_button.click(
                edit_selected_bookmarks_category,
                inputs=[bookmark_selector, new_category],
                outputs=[manage_output, bookmark_selector, bookmark_display_manage]
            )

            export_button.click(
                export_bookmarks,
                outputs=download_link
            )

        logger.info("Launching Gradio app")
        demo.launch(debug=True)
    except Exception as e:
        logger.error(f"Error building the app: {e}", exc_info=True)
        print(f"Error building the app: {e}")

if __name__ == "__main__":
    # Define a semaphore to limit concurrent LLM API calls
    llm_semaphore = asyncio.Semaphore(3)  # Adjust based on allowed concurrency
    build_app()