File size: 31,171 Bytes
314bf31
c6d370d
314bf31
 
e985ab1
 
 
0b28455
 
59084a2
0eb712b
880f9ee
85c9bd6
61242f1
056fd41
cdd7269
 
1e99b99
880f9ee
61242f1
880f9ee
61242f1
cdd7269
 
61242f1
 
cdd7269
 
61242f1
 
cdd7269
 
61242f1
314bf31
 
880f9ee
314bf31
056fd41
e985ab1
314bf31
 
59084a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd9d0c4
 
59084a2
 
1e99b99
 
61242f1
1e99b99
 
 
 
 
868cf67
85c9bd6
 
314bf31
880f9ee
 
 
 
 
 
 
 
 
 
 
 
 
 
314bf31
85c9bd6
0b28455
5165383
 
 
 
 
 
880f9ee
056fd41
0b28455
 
 
 
 
 
880f9ee
0b28455
 
 
 
 
 
 
 
 
 
 
 
 
056fd41
 
 
 
 
0b28455
 
880f9ee
5165383
 
 
 
0b28455
880f9ee
5165383
 
 
 
 
0b28455
5165383
 
314bf31
85c9bd6
056fd41
880f9ee
 
 
 
056fd41
880f9ee
 
 
 
 
 
 
0b28455
056fd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85c9bd6
314bf31
0b28455
 
 
5165383
056fd41
0b28455
 
 
 
 
880f9ee
5165383
314bf31
056fd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85c9bd6
59084a2
ab98d81
 
880f9ee
ab98d81
 
056fd41
 
 
 
 
 
 
59084a2
 
85c9bd6
056fd41
 
 
880f9ee
056fd41
 
 
 
 
 
880f9ee
 
 
f745765
056fd41
 
 
 
 
 
 
 
 
 
85c9bd6
e985ab1
880f9ee
0eb712b
e985ab1
0eb712b
93e2212
0eb712b
 
 
 
 
 
3bc8a35
0eb712b
e985ab1
 
0eb712b
e985ab1
 
0eb712b
 
e985ab1
0eb712b
e985ab1
 
 
 
 
0eb712b
 
 
 
880f9ee
0eb712b
6952cd8
85c9bd6
056fd41
e985ab1
880f9ee
5165383
880f9ee
056fd41
 
 
 
 
 
 
 
5165383
 
880f9ee
 
056fd41
 
 
 
 
 
 
5165383
880f9ee
 
 
 
056fd41
 
 
 
 
 
 
5165383
 
880f9ee
056fd41
 
 
 
 
 
 
5165383
0b28455
880f9ee
 
 
 
056fd41
 
 
 
 
 
 
0b28455
59084a2
5165383
 
59084a2
5165383
880f9ee
056fd41
880f9ee
 
056fd41
 
 
 
 
 
 
 
 
 
 
880f9ee
93e2212
880f9ee
e985ab1
2a1c0da
056fd41
211e5fb
056fd41
2a1c0da
056fd41
 
cdd7269
056fd41
 
 
 
 
 
 
2a1c0da
 
056fd41
2a1c0da
056fd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a1c0da
 
056fd41
 
 
 
 
 
93e2212
2a1c0da
056fd41
 
e985ab1
056fd41
 
 
 
 
 
 
 
2a1c0da
 
056fd41
2a1c0da
056fd41
 
 
 
 
 
 
2a1c0da
056fd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93e2212
2a1c0da
056fd41
 
e985ab1
056fd41
 
 
 
 
 
 
 
2a1c0da
 
056fd41
 
2a1c0da
 
93e2212
2a1c0da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93e2212
2a1c0da
 
93e2212
6952cd8
056fd41
 
61242f1
 
93e2212
61242f1
056fd41
85c9bd6
880f9ee
93e2212
5165383
880f9ee
85c9bd6
056fd41
880f9ee
056fd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e99b99
056fd41
 
85c9bd6
 
1e99b99
 
 
 
 
 
056fd41
1e99b99
 
056fd41
1e99b99
 
 
 
056fd41
1e99b99
 
 
 
 
 
 
 
 
 
 
 
85c9bd6
880f9ee
93e2212
61242f1
 
 
5165383
85c9bd6
f745765
1e99b99
 
056fd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b94b7
93e2212
 
056fd41
 
 
64b94b7
056fd41
93e2212
056fd41
93e2212
056fd41
93e2212
056fd41
 
 
93e2212
056fd41
 
1e99b99
056fd41
 
 
36d73c0
93e2212
1e99b99
93e2212
056fd41
93e2212
056fd41
93e2212
056fd41
 
 
93e2212
056fd41
 
 
1e99b99
056fd41
 
 
93e2212
 
 
 
 
 
1e99b99
2a1c0da
056fd41
 
1e99b99
 
93e2212
1e99b99
93e2212
056fd41
 
 
c6d370d
056fd41
 
93e2212
056fd41
 
93e2212
056fd41
 
93e2212
056fd41
 
 
93e2212
056fd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93e2212
056fd41
1e99b99
cdd7269
056fd41
 
1e99b99
 
93e2212
1e99b99
93e2212
056fd41
1e99b99
056fd41
93e2212
056fd41
 
1e99b99
056fd41
 
93e2212
056fd41
 
93e2212
056fd41
 
 
 
93e2212
056fd41
 
 
93e2212
056fd41
 
 
e985ab1
056fd41
93e2212
 
 
 
 
 
056fd41
1a82ad7
2a1c0da
1e99b99
2a1c0da
056fd41
 
1e99b99
 
2a1c0da
 
056fd41
 
2a1c0da
1e99b99
 
2a1c0da
056fd41
1e99b99
 
 
056fd41
 
 
 
 
 
 
 
 
813db16
 
 
 
1e99b99
 
 
f745765
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
# app.py

import gradio as gr
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import asyncio
import aiohttp
import re
import base64
import logging
import os
import sys
import uuid  # For unique IDs

# Import OpenAI library
import openai

# Set up logging to output to the console
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

# Create a console handler
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.INFO)

# Create a formatter and set it for the handler
formatter = logging.Formatter('%(asctime)s %(levelname)s %(name)s %(message)s')
console_handler.setFormatter(formatter)

# Add the handler to the logger
logger.addHandler(console_handler)

# Initialize models and variables
logger.info("Initializing models and variables")
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = faiss.IndexIDMap(faiss.IndexFlatL2(embedding_model.get_sentence_embedding_dimension()))
bookmarks = []
fetch_cache = {}

# Define the categories
CATEGORIES = [
    "Social Media",
    "News and Media",
    "Education and Learning",
    "Entertainment",
    "Shopping and E-commerce",
    "Finance and Banking",
    "Technology",
    "Health and Fitness",
    "Travel and Tourism",
    "Food and Recipes",
    "Sports",
    "Arts and Culture",
    "Government and Politics",
    "Business and Economy",
    "Science and Research",
    "Personal Blogs and Journals",
    "Job Search and Careers",
    "Music and Audio",
    "Videos and Movies",
    "Reference and Knowledge Bases",
    "Dead Link",
    "Uncategorized",
]

# Set up Groq Cloud API key and base URL
GROQ_API_KEY = os.getenv('GROQ_API_KEY')

if not GROQ_API_KEY:
    logger.error("GROQ_API_KEY environment variable not set.")

# Set OpenAI API key and base URL to use Groq Cloud API
openai.api_key = GROQ_API_KEY
openai.api_base = "https://api.groq.com/openai/v1"  # Corrected API base URL

# Function to parse bookmarks from HTML
def parse_bookmarks(file_content):
    logger.info("Parsing bookmarks")
    try:
        soup = BeautifulSoup(file_content, 'html.parser')
        extracted_bookmarks = []
        for link in soup.find_all('a'):
            url = link.get('href')
            title = link.text.strip()
            if url and title:
                extracted_bookmarks.append({'url': url, 'title': title})
        logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
        return extracted_bookmarks
    except Exception as e:
        logger.error("Error parsing bookmarks: %s", e)
        raise

# Asynchronous function to fetch URL info
async def fetch_url_info(session, bookmark):
    url = bookmark['url']
    if url in fetch_cache:
        bookmark.update(fetch_cache[url])
        return bookmark

    try:
        logger.info(f"Fetching URL info for: {url}")
        async with session.get(url, timeout=10) as response:
            bookmark['etag'] = response.headers.get('ETag', 'N/A')
            bookmark['status_code'] = response.status

            if response.status >= 400:
                bookmark['dead_link'] = True
                bookmark['description'] = ''
                logger.warning(f"Dead link detected: {url} with status {response.status}")
            else:
                bookmark['dead_link'] = False
                content = await response.text()
                soup = BeautifulSoup(content, 'html.parser')

                # Extract meta description or Open Graph description
                meta_description = soup.find('meta', attrs={'name': 'description'})
                og_description = soup.find('meta', attrs={'property': 'og:description'})
                if og_description and og_description.get('content'):
                    description = og_description.get('content')
                elif meta_description and meta_description.get('content'):
                    description = meta_description.get('content')
                else:
                    # If no description, extract visible text
                    texts = soup.stripped_strings
                    description = ' '.join(texts[:200])  # Limit to first 200 words
                    # Generate summary using LLM
                    description = generate_summary_with_llm(description)

                bookmark['description'] = description
                logger.info(f"Fetched description for {url}")
    except Exception as e:
        bookmark['dead_link'] = True
        bookmark['etag'] = 'N/A'
        bookmark['status_code'] = 'N/A'
        bookmark['description'] = ''
        logger.error(f"Error fetching URL info for {url}: {e}")
    finally:
        fetch_cache[url] = {
            'etag': bookmark.get('etag'),
            'status_code': bookmark.get('status_code'),
            'dead_link': bookmark.get('dead_link'),
            'description': bookmark.get('description'),
        }
    return bookmark

# Asynchronous processing of bookmarks
async def process_bookmarks_async(bookmarks_list):
    logger.info("Processing bookmarks asynchronously")
    try:
        async with aiohttp.ClientSession() as session:
            tasks = []
            for bookmark in bookmarks_list:
                task = asyncio.ensure_future(fetch_url_info(session, bookmark))
                tasks.append(task)
            await asyncio.gather(*tasks)
        logger.info("Completed processing bookmarks asynchronously")
    except Exception as e:
        logger.error(f"Error in asynchronous processing of bookmarks: {e}")
        raise

# Generate summary for a bookmark using LLM
def generate_summary_with_llm(text):
    logger.info("Generating summary with LLM")
    try:
        prompt = f"Summarize the following content in a concise manner:\n\n{text}"
        response = openai.ChatCompletion.create(
            model='gpt-3.5-turbo',  # Use appropriate model
            messages=[
                {"role": "system", "content": "You are a helpful assistant that summarizes text."},
                {"role": "user", "content": prompt}
            ],
            max_tokens=150,
            temperature=0.5,
        )
        summary = response['choices'][0]['message']['content'].strip()
        logger.info("Summary generated successfully")
        return summary
    except Exception as e:
        logger.error(f"Error generating summary with LLM: {e}")
        return "No summary available."

# Generate summary for a bookmark
def generate_summary(bookmark):
    description = bookmark.get('description', '')
    if description:
        bookmark['summary'] = description
    else:
        # Fallback summary generation
        title = bookmark.get('title', '')
        if title:
            bookmark['summary'] = title
        else:
            bookmark['summary'] = 'No summary available.'
    logger.info(f"Generated summary for bookmark: {bookmark.get('url')}")
    return bookmark

# Assign category to a bookmark using LLM
def assign_category_with_llm(summary):
    logger.info("Assigning category with LLM")
    try:
        categories_str = ', '.join(CATEGORIES)
        prompt = f"Assign the most appropriate category to the following summary from the list of categories.\n\nSummary: {summary}\n\nCategories: {categories_str}\n\nCategory:"
        response = openai.ChatCompletion.create(
            model='gpt-3.5-turbo',  # Use appropriate model
            messages=[
                {"role": "system", "content": "You are a helpful assistant that assigns categories."},
                {"role": "user", "content": prompt}
            ],
            max_tokens=10,
            temperature=0.3,
        )
        category = response['choices'][0]['message']['content'].strip()
        # Ensure the category is valid
        if category in CATEGORIES:
            logger.info(f"Assigned category '{category}' successfully")
            return category
        else:
            logger.warning(f"Received invalid category '{category}' from LLM. Defaulting to 'Uncategorized'.")
            return "Uncategorized"
    except Exception as e:
        logger.error(f"Error assigning category with LLM: {e}")
        return "Uncategorized"

# Assign category to a bookmark
def assign_category(bookmark):
    if bookmark.get('dead_link'):
        bookmark['category'] = 'Dead Link'
        logger.info(f"Assigned category 'Dead Link' to bookmark: {bookmark.get('url')}")
        return bookmark

    summary = bookmark.get('summary', '')
    if summary:
        category = assign_category_with_llm(summary)
        bookmark['category'] = category
    else:
        bookmark['category'] = 'Uncategorized'
        logger.info(f"No summary available to assign category for bookmark: {bookmark.get('url')}")
    return bookmark

# Vectorize summaries and build FAISS index
def vectorize_and_index(bookmarks_list):
    global faiss_index
    logger.info("Vectorizing summaries and updating FAISS index")
    try:
        summaries = [bookmark['summary'] for bookmark in bookmarks_list]
        embeddings = embedding_model.encode(summaries).astype('float32')
        ids = [uuid.uuid4().int & (1<<64)-1 for _ in bookmarks_list]  # Generate unique 64-bit integer IDs
        faiss_index.add_with_ids(embeddings, np.array(ids))
        logger.info("FAISS index updated successfully")
        return embeddings, ids
    except Exception as e:
        logger.error(f"Error in vectorizing and indexing: {e}")
        raise

# Remove vectors from FAISS index by IDs
def remove_from_faiss(ids_to_remove):
    global faiss_index
    logger.info(f"Removing {len(ids_to_remove)} vectors from FAISS index")
    try:
        faiss_index.remove_ids(np.array(ids_to_remove))
        logger.info("Vectors removed from FAISS index successfully")
    except Exception as e:
        logger.error(f"Error removing vectors from FAISS index: {e}")

# Generate HTML display for bookmarks
def display_bookmarks():
    logger.info("Generating HTML display for bookmarks")
    cards = ''
    for i, bookmark in enumerate(bookmarks):
        index = i + 1  # Start index at 1
        status = "❌ Dead Link" if bookmark.get('dead_link') else "βœ… Active"
        title = bookmark['title']
        url = bookmark['url']
        etag = bookmark.get('etag', 'N/A')
        summary = bookmark.get('summary', '')
        category = bookmark.get('category', 'Uncategorized')

        # Apply inline styles using CSS variables
        if bookmark.get('dead_link'):
            card_style = "border: 2px solid var(--error-color);"
            text_style = "color: var(--error-color);"
        else:
            card_style = "border: 2px solid var(--success-color);"
            text_style = "color: var(--text-color);"

        card_html = f'''
        <div class="card" style="{card_style}; padding: 10px; margin: 10px; border-radius: 5px;">
            <div class="card-content">
                <h3 style="{text_style}">{index}. {title} {status}</h3>
                <p style="{text_style}"><strong>Category:</strong> {category}</p>
                <p style="{text_style}"><strong>URL:</strong> <a href="{url}" target="_blank" style="{text_style}">{url}</a></p>
                <p style="{text_style}"><strong>ETag:</strong> {etag}</p>
                <p style="{text_style}"><strong>Summary:</strong> {summary}</p>
            </div>
        </div>
        '''
        cards += card_html
    logger.info("HTML display generated")
    return cards

# Process the uploaded file
def process_uploaded_file(file, state_bookmarks):
    global bookmarks, faiss_index
    logger.info("Processing uploaded file")
    if file is None:
        logger.warning("No file uploaded")
        return (
            "⚠️ Please upload a bookmarks HTML file.",
            "",
            gr.update(choices=[]),
            display_bookmarks(),
            state_bookmarks  # Return the unchanged state
        )

    try:
        file_content = file.decode('utf-8')
    except UnicodeDecodeError as e:
        logger.error(f"Error decoding the file: {e}")
        return (
            "⚠️ Error decoding the file. Please ensure it's a valid HTML file.",
            "",
            gr.update(choices=[]),
            display_bookmarks(),
            state_bookmarks  # Return the unchanged state
        )

    try:
        bookmarks = parse_bookmarks(file_content)
    except Exception as e:
        logger.error(f"Error parsing bookmarks: {e}")
        return (
            "⚠️ Error parsing the bookmarks HTML file.",
            "",
            gr.update(choices=[]),
            display_bookmarks(),
            state_bookmarks  # Return the unchanged state
        )

    if not bookmarks:
        logger.warning("No bookmarks found in the uploaded file")
        return (
            "⚠️ No bookmarks found in the uploaded file.",
            "",
            gr.update(choices=[]),
            display_bookmarks(),
            state_bookmarks  # Return the unchanged state
        )

    # Asynchronously fetch bookmark info
    try:
        asyncio.run(process_bookmarks_async(bookmarks))
    except Exception as e:
        logger.error(f"Error processing bookmarks asynchronously: {e}")
        return (
            "⚠️ Error processing bookmarks.",
            "",
            gr.update(choices=[]),
            display_bookmarks(),
            state_bookmarks  # Return the unchanged state
        )

    # Generate summaries and assign categories
    for bookmark in bookmarks:
        generate_summary(bookmark)
        assign_category(bookmark)

    try:
        embeddings, ids = vectorize_and_index(bookmarks)
    except Exception as e:
        logger.error(f"Error building FAISS index: {e}")
        return (
            "⚠️ Error building search index.",
            "",
            gr.update(choices=[]),
            display_bookmarks(),
            state_bookmarks  # Return the unchanged state
        )

    # Assign unique IDs to bookmarks
    for bookmark, id_ in zip(bookmarks, ids):
        bookmark['id'] = id_

    message = f"βœ… Successfully processed {len(bookmarks)} bookmarks."
    logger.info(message)
    bookmark_html = display_bookmarks()

    # Prepare Manage Bookmarks tab outputs
    choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)]
    bookmarks_html_manage = display_bookmarks()

    # Update the shared state
    updated_state = bookmarks.copy()

    return (
        message,
        bookmark_html,
        gr.update(choices=choices, value=[]),
        bookmarks_html_manage,
        updated_state  # Return the updated state
    )

# Delete selected bookmarks
def delete_selected_bookmarks(selected_indices, state_bookmarks):
    if not selected_indices:
        return "⚠️ No bookmarks selected.", gr.update(choices=[]), display_bookmarks(), state_bookmarks

    bookmarks = state_bookmarks.copy()
    ids_to_remove = []
    indices = []
    for s in selected_indices:
        try:
            idx = int(s.split('.')[0]) - 1
            if 0 <= idx < len(bookmarks):
                ids_to_remove.append(bookmarks[idx]['id'])
                indices.append(idx)
            else:
                logger.warning(f"Index out of range: {idx + 1}")
        except ValueError:
            logger.error(f"Invalid selection format: {s}")

    # Remove bookmarks from the list
    indices = sorted(indices, reverse=True)
    for idx in indices:
        logger.info(f"Deleting bookmark at index {idx + 1}")
        bookmarks.pop(idx)

    # Remove embeddings from FAISS index
    remove_from_faiss(ids_to_remove)

    message = "πŸ—‘οΈ Selected bookmarks deleted successfully."
    logger.info(message)

    # Regenerate HTML display
    bookmarks_html = display_bookmarks()

    # Update choices for selection
    choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)]

    # Update the shared state
    updated_state = bookmarks.copy()

    return message, gr.update(choices=choices, value=[]), bookmarks_html, updated_state

# Edit category of selected bookmarks
def edit_selected_bookmarks_category(selected_indices, new_category, state_bookmarks):
    if not selected_indices:
        return (
            "⚠️ No bookmarks selected.",
            gr.update(choices=[f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(state_bookmarks)], value=[]),
            display_bookmarks(),
            state_bookmarks
        )

    if not new_category:
        return (
            "⚠️ No new category selected.",
            gr.update(choices=[f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(state_bookmarks)], value=[]),
            display_bookmarks(),
            state_bookmarks
        )

    bookmarks = state_bookmarks.copy()
    for s in selected_indices:
        try:
            idx = int(s.split('.')[0]) - 1
            if 0 <= idx < len(bookmarks):
                bookmarks[idx]['category'] = new_category
                logger.info(f"Updated category for bookmark {idx + 1} to {new_category}")
        except ValueError:
            logger.error(f"Invalid selection format: {s}")

    message = "✏️ Category updated for selected bookmarks."
    logger.info(message)

    # Regenerate HTML display
    bookmarks_html = display_bookmarks()

    # Update choices for selection
    choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)]

    # Update the shared state
    updated_state = bookmarks.copy()

    return message, gr.update(choices=choices, value=[]), bookmarks_html, updated_state

# Export bookmarks to HTML
def export_bookmarks(state_bookmarks):
    bookmarks = state_bookmarks
    if not bookmarks:
        logger.warning("No bookmarks to export")
        return "⚠️ No bookmarks to export."
    try:
        logger.info("Exporting bookmarks to HTML")
        # Create an HTML content similar to the imported bookmarks file
        soup = BeautifulSoup("<!DOCTYPE NETSCAPE-Bookmark-file-1><Title>Bookmarks</Title><H1>Bookmarks</H1>", 'html.parser')
        dl = soup.new_tag('DL')
        for bookmark in bookmarks:
            dt = soup.new_tag('DT')
            a = soup.new_tag('A', href=bookmark['url'])
            a.string = bookmark['title']
            dt.append(a)
            dl.append(dt)
        soup.append(dl)
        html_content = str(soup)
        # Encode the HTML content to base64 for download
        b64 = base64.b64encode(html_content.encode()).decode()
        href = f'data:text/html;base64,{b64}'
        logger.info("Bookmarks exported successfully")
        return f'<a href="{href}" download="bookmarks.html">πŸ’Ύ Download Exported Bookmarks</a>'
    except Exception as e:
        logger.error(f"Error exporting bookmarks: {e}")
        return "⚠️ Error exporting bookmarks."

# Chatbot response using Groq Cloud API with FAISS search
def chatbot_response(user_query, state_bookmarks):
    if not GROQ_API_KEY:
        logger.warning("GROQ_API_KEY not set.")
        return "⚠️ API key not set. Please set the GROQ_API_KEY environment variable in the Hugging Face Space settings."

    bookmarks = state_bookmarks
    if not bookmarks:
        logger.warning("No bookmarks available for chatbot")
        return "⚠️ No bookmarks available. Please upload and process your bookmarks first."

    logger.info(f"Chatbot received query: {user_query}")

    # Prepare the prompt for the LLM using FAISS search
    try:
        # Encode the user query
        query_embedding = embedding_model.encode([user_query]).astype('float32')

        # Perform FAISS search
        k = 5  # Number of top results to retrieve
        distances, indices = faiss_index.search(query_embedding, k)

        # Fetch the corresponding bookmarks
        relevant_bookmarks = []
        for idx in indices[0]:
            if idx == -1:
                continue  # No more results
            # Find the bookmark with matching ID
            for bookmark in bookmarks:
                if bookmark.get('id') == idx:
                    relevant_bookmarks.append(bookmark)
                    break

        if not relevant_bookmarks:
            return "πŸ” No relevant bookmarks found for your query."

        # Prepare the summary of relevant bookmarks
        bookmark_data = ""
        for bm in relevant_bookmarks:
            bookmark_data += f"Title: {bm['title']}\nURL: {bm['url']}\nSummary: {bm['summary']}\n\n"

        # Construct the prompt
        prompt = f"""
You are an assistant that helps users find relevant bookmarks from their collection based on their queries.

User Query:
{user_query}

Relevant Bookmarks:
{bookmark_data}

Please provide a concise summary of the most relevant bookmarks that match the user's query.
"""

        # Call the Groq Cloud API via the OpenAI client
        response = openai.ChatCompletion.create(
            model='gpt-3.5-turbo',  # Use appropriate model
            messages=[
                {"role": "system", "content": "You help users find relevant bookmarks based on their queries."},
                {"role": "user", "content": prompt}
            ],
            max_tokens=500,
            temperature=0.7,
        )

        # Extract the response text
        answer = response['choices'][0]['message']['content'].strip()
        logger.info("Chatbot response generated using Groq Cloud API")
        return answer

    except Exception as e:
        error_message = f"⚠️ Error processing your query: {str(e)}"
        logger.error(error_message)
        print(error_message)  # Ensure error appears in Hugging Face Spaces logs
        return error_message

# Build the Gradio app
def build_app():
    try:
        logger.info("Building Gradio app")
        with gr.Blocks(css="""
        .card {
            box-shadow: 0 4px 8px 0 rgba(0,0,0,0.2);
            transition: 0.3s;
        }
        .card:hover {
            box-shadow: 0 8px 16px 0 rgba(0,0,0,0.2);
        }

        /* Dynamic Theme Styling */
        @media (prefers-color-scheme: dark) {
            body {
                color: white;
                background-color: #121212;
            }
            .card {
                background-color: #1e1e1e;
            }
            a {
                color: #bb86fc;
            }
            h1, h2, h3, p, strong {
                color: inherit;
            }
        }

        @media (prefers-color-scheme: light) {
            body {
                color: black;
                background-color: white;
            }
            .card {
                background-color: #fff;
            }
            a {
                color: #1a0dab;
            }
            h1, h2, h3, p, strong {
                color: inherit;
            }
        }
        """) as demo:
            # Shared states
            state_bookmarks = gr.State([])
            chat_history = gr.State([])

            # General Overview
            gr.Markdown("""
    # πŸ“š SmartMarks - AI Browser Bookmarks Manager

    Welcome to **SmartMarks**, your intelligent assistant for managing browser bookmarks. SmartMarks leverages AI to help you organize, search, and interact with your bookmarks seamlessly. Whether you're looking to categorize your links, retrieve information quickly, or maintain an updated list, SmartMarks has you covered.

    ---

    ## πŸš€ **How to Use SmartMarks**

    SmartMarks is divided into three main sections:

    1. **πŸ“‚ Upload and Process Bookmarks:** Import your existing bookmarks and let SmartMarks analyze and categorize them for you.
    2. **πŸ’¬ Chat with Bookmarks:** Interact with your bookmarks using natural language queries to find relevant links effortlessly.
    3. **πŸ› οΈ Manage Bookmarks:** View, edit, delete, and export your bookmarks with ease.

    Navigate through the tabs to explore each feature in detail.
    """)

            # Define Manage Bookmarks components outside the tab for global access
            bookmark_selector = gr.CheckboxGroup(label="βœ… Select Bookmarks", choices=[])
            bookmark_display_manage = gr.HTML(label="πŸ“„ Manage Bookmarks Display")

            # Upload and Process Bookmarks Tab
            with gr.Tab("Upload and Process Bookmarks"):
                gr.Markdown("""
    ## πŸ“‚ **Upload and Process Bookmarks**

    ### πŸ“ **Steps to Upload and Process:**

    1. **πŸ”½ Upload Bookmarks File:**
       - Click on the **"πŸ“ Upload Bookmarks HTML File"** button.
       - Select your browser's exported bookmarks HTML file from your device.

    2. **βš™οΈ Process Bookmarks:**
       - After uploading, click on the **"βš™οΈ Process Bookmarks"** button.
       - SmartMarks will parse your bookmarks, fetch additional information, generate summaries, and categorize each link based on predefined categories.

    3. **πŸ“„ View Processed Bookmarks:**
       - Once processing is complete, your bookmarks will be displayed in an organized and visually appealing format below.
    """)

                upload = gr.File(label="πŸ“ Upload Bookmarks HTML File", type='binary')
                process_button = gr.Button("βš™οΈ Process Bookmarks")
                output_text = gr.Textbox(label="βœ… Output", interactive=False)
                bookmark_display = gr.HTML(label="πŸ“„ Bookmarks")

                process_button.click(
                    process_uploaded_file,
                    inputs=[upload, state_bookmarks],
                    outputs=[output_text, bookmark_display, bookmark_selector, bookmark_display_manage, state_bookmarks]
                )

            # Chat with Bookmarks Tab
            with gr.Tab("Chat with Bookmarks"):
                gr.Markdown("""
    ## πŸ’¬ **Chat with Bookmarks**

    ### πŸ€– **How to Interact:**

    1. **✍️ Enter Your Query:**
       - In the **"✍️ Ask about your bookmarks"** textbox, type your question or keyword related to your bookmarks. For example, "Do I have any bookmarks about GenerativeAI?"

    2. **πŸ“¨ Submit Your Query:**
       - Click the **"πŸ“¨ Send"** button to submit your query.

    3. **πŸ“ˆ Receive AI-Driven Responses:**
       - SmartMarks will analyze your query and provide relevant bookmarks that match your request, making it easier to find specific links without manual searching.

    4. **πŸ—‚οΈ View Chat History:**
       - All your queries and the corresponding AI responses are displayed in the chat history for your reference.
    """)

                with gr.Row():
                    chat_history_display = gr.Chatbot(label="πŸ—¨οΈ Chat History")
                    with gr.Column(scale=1):
                        chat_input = gr.Textbox(
                            label="✍️ Ask about your bookmarks",
                            placeholder="e.g., Do I have any bookmarks about GenerativeAI?",
                            lines=1,
                            interactive=True
                        )
                        chat_button = gr.Button("πŸ“¨ Send")

                # When user presses Enter in chat_input
                chat_input.submit(
                    chatbot_response,
                    inputs=[chat_input, state_bookmarks],
                    outputs=chat_history_display
                )

                # When user clicks Send button
                chat_button.click(
                    chatbot_response,
                    inputs=[chat_input, state_bookmarks],
                    outputs=chat_history_display
                )

            # Manage Bookmarks Tab
            with gr.Tab("Manage Bookmarks"):
                gr.Markdown("""
    ## πŸ› οΈ **Manage Bookmarks**

    ### πŸ—‚οΈ **Features:**

    1. **πŸ‘οΈ View Bookmarks:**
       - All your processed bookmarks are displayed here with their respective categories and summaries.

    2. **βœ… Select Bookmarks:**
       - Use the checkboxes next to each bookmark to select one, multiple, or all bookmarks you wish to manage.

    3. **πŸ—‘οΈ Delete Selected Bookmarks:**
       - After selecting the desired bookmarks, click the **"πŸ—‘οΈ Delete Selected Bookmarks"** button to remove them from your list.

    4. **✏️ Edit Categories:**
       - Select the bookmarks you want to re-categorize.
       - Choose a new category from the dropdown menu labeled **"πŸ†• New Category"**.
       - Click the **"✏️ Edit Category of Selected Bookmarks"** button to update their categories.

    5. **πŸ’Ύ Export Bookmarks:**
       - Click the **"πŸ’Ύ Export Bookmarks"** button to download your updated bookmarks as an HTML file.
       - This file can be uploaded back to your browser to reflect the changes made within SmartMarks.

    6. **πŸ”„ Refresh Bookmarks:**
       - Click the **"πŸ”„ Refresh Bookmarks"** button to ensure the latest state is reflected in the display.
    """)

                manage_output = gr.Textbox(label="πŸ”„ Manage Output", interactive=False)
                new_category_input = gr.Dropdown(label="πŸ†• New Category", choices=CATEGORIES, value="Uncategorized")
                with gr.Row():
                    delete_button = gr.Button("πŸ—‘οΈ Delete Selected Bookmarks")
                    edit_category_button = gr.Button("✏️ Edit Category of Selected Bookmarks")
                    export_button = gr.Button("πŸ’Ύ Export Bookmarks")
                download_link = gr.HTML(label="πŸ“₯ Download Exported Bookmarks")
                refresh_button = gr.Button("πŸ”„ Refresh Bookmarks")

                # Define button actions
                delete_button.click(
                    delete_selected_bookmarks,
                    inputs=[bookmark_selector, state_bookmarks],
                    outputs=[manage_output, bookmark_selector, bookmark_display_manage, state_bookmarks]
                )

                edit_category_button.click(
                    edit_selected_bookmarks_category,
                    inputs=[bookmark_selector, new_category_input, state_bookmarks],
                    outputs=[manage_output, bookmark_selector, bookmark_display_manage, state_bookmarks]
                )

                export_button.click(
                    export_bookmarks,
                    inputs=[state_bookmarks],
                    outputs=download_link
                )

                refresh_button.click(
                    lambda bookmarks: (
                        [
                            f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)
                        ],
                        display_bookmarks()
                    ),
                    inputs=[state_bookmarks],
                    outputs=[bookmark_selector, bookmark_display_manage]
                )

        logger.info("Launching Gradio app")
        demo.launch(debug=True)
    except Exception as e:
        logger.error(f"Error building the app: {e}")
        print(f"Error building the app: {e}")

if __name__ == "__main__":
    build_app()