Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,265 +1,265 @@
|
|
1 |
-
from ultralytics import YOLO
|
2 |
-
import cv2
|
3 |
-
from stockfish import Stockfish
|
4 |
-
import os
|
5 |
-
import numpy as np
|
6 |
-
import streamlit as st
|
7 |
-
|
8 |
-
# Constants
|
9 |
-
FEN_MAPPING = {
|
10 |
-
"black-pawn": "p", "black-rook": "r", "black-knight": "n", "black-bishop": "b", "black-queen": "q", "black-king": "k",
|
11 |
-
"white-pawn": "P", "white-rook": "R", "white-knight": "N", "white-bishop": "B", "white-queen": "Q", "white-king": "K"
|
12 |
-
}
|
13 |
-
GRID_BORDER = 10 # Border size in pixels
|
14 |
-
GRID_SIZE = 204 # Effective grid size (10px to 214px)
|
15 |
-
BLOCK_SIZE = GRID_SIZE // 8 # Each block is ~25px
|
16 |
-
X_LABELS = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] # Labels for x-axis (a to h)
|
17 |
-
Y_LABELS = [8, 7, 6, 5, 4, 3, 2, 1] # Reversed labels for y-axis (8 to 1)
|
18 |
-
|
19 |
-
# Functions
|
20 |
-
def get_grid_coordinate(pixel_x, pixel_y):
|
21 |
-
"""
|
22 |
-
Function to determine the grid coordinate of a pixel, considering a 10px border and
|
23 |
-
the grid where bottom-left is (a, 1) and top-left is (h, 8).
|
24 |
-
"""
|
25 |
-
# Grid settings
|
26 |
-
border = 10 # 10px border
|
27 |
-
grid_size = 204 # Effective grid size (10px to 214px)
|
28 |
-
block_size = grid_size // 8 # Each block is ~25px
|
29 |
-
|
30 |
-
x_labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] # Labels for x-axis (a to h)
|
31 |
-
y_labels = [8, 7, 6, 5, 4, 3, 2, 1] # Reversed labels for y-axis (8 to 1)
|
32 |
-
|
33 |
-
# Adjust pixel_x and pixel_y by subtracting the border (grid starts at pixel 10)
|
34 |
-
adjusted_x = pixel_x - border
|
35 |
-
adjusted_y = pixel_y - border
|
36 |
-
|
37 |
-
# Check bounds
|
38 |
-
if adjusted_x < 0 or adjusted_y < 0 or adjusted_x >= grid_size or adjusted_y >= grid_size:
|
39 |
-
return "Pixel outside grid bounds"
|
40 |
-
|
41 |
-
# Determine the grid column and row
|
42 |
-
x_index = adjusted_x // block_size
|
43 |
-
y_index = adjusted_y // block_size
|
44 |
-
|
45 |
-
if x_index < 0 or x_index >= len(x_labels) or y_index < 0 or y_index >= len(y_labels):
|
46 |
-
return "Pixel outside grid bounds"
|
47 |
-
|
48 |
-
# Convert indices to grid coordinates
|
49 |
-
x_index = adjusted_x // block_size # Determine the column index (0-7)
|
50 |
-
y_index = adjusted_y // block_size # Determine the row index (0-7)
|
51 |
-
|
52 |
-
# Convert row index to the correct label, with '8' at the bottom
|
53 |
-
y_labeld = y_labels[y_index] # Correct index directly maps to '8' to '1'
|
54 |
-
x_label = x_labels[x_index]
|
55 |
-
y_label = 8 - y_labeld + 1
|
56 |
-
|
57 |
-
return f"{x_label}{y_label}"
|
58 |
-
|
59 |
-
def predict_next_move(fen, stockfish):
|
60 |
-
"""
|
61 |
-
Predict the next move using Stockfish.
|
62 |
-
"""
|
63 |
-
if stockfish.is_fen_valid(fen):
|
64 |
-
stockfish.set_fen_position(fen)
|
65 |
-
else:
|
66 |
-
return "Invalid FEN notation!"
|
67 |
-
|
68 |
-
best_move = stockfish.get_best_move()
|
69 |
-
ans = transform_string(best_move)
|
70 |
-
return f"The predicted next move is: {ans}" if best_move else "No valid move found (checkmate/stalemate)."
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
def process_image(image_path):
|
76 |
-
# Ensure output directory exists
|
77 |
-
if not os.path.exists('output'):
|
78 |
-
os.makedirs('output')
|
79 |
-
|
80 |
-
# Load the segmentation model
|
81 |
-
segmentation_model = YOLO("segmentation.pt")
|
82 |
-
|
83 |
-
# Run inference to get segmentation results
|
84 |
-
results = segmentation_model.predict(
|
85 |
-
source=image_path,
|
86 |
-
conf=0.8 # Confidence threshold
|
87 |
-
)
|
88 |
-
|
89 |
-
# Initialize variables for the segmented mask and bounding box
|
90 |
-
segmentation_mask = None
|
91 |
-
bbox = None
|
92 |
-
|
93 |
-
for result in results:
|
94 |
-
if result.boxes.conf[0] >= 0.8: # Filter results by confidence
|
95 |
-
segmentation_mask = result.masks.data.cpu().numpy().astype(np.uint8)[0]
|
96 |
-
bbox = result.boxes.xyxy[0].cpu().numpy() # Get the bounding box coordinates
|
97 |
-
break
|
98 |
-
|
99 |
-
if segmentation_mask is None:
|
100 |
-
print("No segmentation mask with confidence above 0.8 found.")
|
101 |
-
return None
|
102 |
-
|
103 |
-
# Load the image
|
104 |
-
image = cv2.imread(image_path)
|
105 |
-
|
106 |
-
# Resize segmentation mask to match the input image dimensions
|
107 |
-
segmentation_mask_resized = cv2.resize(segmentation_mask, (image.shape[1], image.shape[0]))
|
108 |
-
|
109 |
-
# Extract bounding box coordinates
|
110 |
-
if bbox is not None:
|
111 |
-
x1, y1, x2, y2 = bbox
|
112 |
-
# Crop the segmented region based on the bounding box
|
113 |
-
cropped_segment = image[int(y1):int(y2), int(x1):int(x2)]
|
114 |
-
|
115 |
-
# Save the cropped segmented image
|
116 |
-
cropped_image_path = 'output/cropped_segment.jpg'
|
117 |
-
cv2.imwrite(cropped_image_path, cropped_segment)
|
118 |
-
print(f"Cropped segmented image saved to {cropped_image_path}")
|
119 |
-
|
120 |
-
st.image(cropped_segment, caption="Uploaded Image", use_column_width=True)
|
121 |
-
# Return the cropped image
|
122 |
-
return cropped_segment
|
123 |
-
|
124 |
-
def transform_string(input_str):
|
125 |
-
# Remove extra spaces and convert to lowercase
|
126 |
-
input_str = input_str.strip().lower()
|
127 |
-
|
128 |
-
# Check if input is valid
|
129 |
-
if len(input_str) != 4 or not input_str[0].isalpha() or not input_str[1].isdigit() or \
|
130 |
-
not input_str[2].isalpha() or not input_str[3].isdigit():
|
131 |
-
return "Invalid input"
|
132 |
-
|
133 |
-
# Define mappings
|
134 |
-
letter_mapping = {
|
135 |
-
'a': 'h', 'b': 'g', 'c': 'f', 'd': 'e',
|
136 |
-
'e': 'd', 'f': 'c', 'g': 'b', 'h': 'a'
|
137 |
-
}
|
138 |
-
number_mapping = {
|
139 |
-
'1': '8', '2': '7', '3': '6', '4': '5',
|
140 |
-
'5': '4', '6': '3', '7': '2', '8': '1'
|
141 |
-
}
|
142 |
-
|
143 |
-
# Transform string
|
144 |
-
result = ""
|
145 |
-
for i, char in enumerate(input_str):
|
146 |
-
if i % 2 == 0: # Letters
|
147 |
-
result += letter_mapping.get(char, "Invalid")
|
148 |
-
else: # Numbers
|
149 |
-
result += number_mapping.get(char, "Invalid")
|
150 |
-
|
151 |
-
# Check for invalid transformations
|
152 |
-
if "Invalid" in result:
|
153 |
-
return "Invalid input"
|
154 |
-
|
155 |
-
return result
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
# Streamlit app
|
160 |
-
def main():
|
161 |
-
st.title("Chessboard Position Detection and Move Prediction")
|
162 |
-
|
163 |
-
# User uploads an image or captures it from their camera
|
164 |
-
image_file = st.camera_input("Capture a chessboard image") or st.file_uploader("Upload a chessboard image", type=["jpg", "jpeg", "png"])
|
165 |
-
|
166 |
-
if image_file is not None:
|
167 |
-
# Save the image to a temporary file
|
168 |
-
temp_dir = "temp_images"
|
169 |
-
os.makedirs(temp_dir, exist_ok=True)
|
170 |
-
temp_file_path = os.path.join(temp_dir, "uploaded_image.jpg")
|
171 |
-
with open(temp_file_path, "wb") as f:
|
172 |
-
f.write(image_file.getbuffer())
|
173 |
-
|
174 |
-
# Process the image using its file path
|
175 |
-
processed_image = process_image(temp_file_path)
|
176 |
-
|
177 |
-
if processed_image is not None:
|
178 |
-
# Resize the image to 224x224
|
179 |
-
processed_image = cv2.resize(processed_image, (224, 224))
|
180 |
-
height, width, _ = processed_image.shape
|
181 |
-
|
182 |
-
# Initialize the YOLO model
|
183 |
-
model = YOLO("standard.pt") # Replace with your trained model weights file
|
184 |
-
|
185 |
-
# Run detection
|
186 |
-
results = model.predict(source=processed_image, save=False, save_txt=False, conf=0.6)
|
187 |
-
|
188 |
-
# Initialize the board for FEN (empty rows represented by "8")
|
189 |
-
board = [["8"] * 8 for _ in range(8)]
|
190 |
-
|
191 |
-
# Extract predictions and map to FEN board
|
192 |
-
for result in results[0].boxes:
|
193 |
-
x1, y1, x2, y2 = result.xyxy[0].tolist()
|
194 |
-
class_id = int(result.cls[0])
|
195 |
-
class_name = model.names[class_id]
|
196 |
-
|
197 |
-
# Convert class_name to FEN notation
|
198 |
-
fen_piece = FEN_MAPPING.get(class_name, None)
|
199 |
-
if not fen_piece:
|
200 |
-
continue
|
201 |
-
|
202 |
-
# Calculate the center of the bounding box
|
203 |
-
center_x = (x1 + x2) / 2
|
204 |
-
center_y = (y1 + y2) / 2
|
205 |
-
|
206 |
-
# Convert to integer pixel coordinates
|
207 |
-
pixel_x = int(center_x)
|
208 |
-
pixel_y = int(height - center_y) # Flip Y-axis for generic coordinate system
|
209 |
-
|
210 |
-
# Get grid coordinate
|
211 |
-
grid_position = get_grid_coordinate(pixel_x, pixel_y)
|
212 |
-
|
213 |
-
if grid_position != "Pixel outside grid bounds":
|
214 |
-
file = ord(grid_position[0]) - ord('a') # Column index (0-7)
|
215 |
-
rank = int(grid_position[1]) - 1 # Row index (0-7)
|
216 |
-
|
217 |
-
# Place the piece on the board
|
218 |
-
board[7 - rank][file] = fen_piece # Flip rank index for FEN
|
219 |
-
|
220 |
-
# Generate the FEN string
|
221 |
-
fen_rows = []
|
222 |
-
for row in board:
|
223 |
-
fen_row = ""
|
224 |
-
empty_count = 0
|
225 |
-
for cell in row:
|
226 |
-
if cell == "8":
|
227 |
-
empty_count += 1
|
228 |
-
else:
|
229 |
-
if empty_count > 0:
|
230 |
-
fen_row += str(empty_count)
|
231 |
-
empty_count = 0
|
232 |
-
fen_row += cell
|
233 |
-
if empty_count > 0:
|
234 |
-
fen_row += str(empty_count)
|
235 |
-
fen_rows.append(fen_row)
|
236 |
-
|
237 |
-
position_fen = "/".join(fen_rows)
|
238 |
-
|
239 |
-
# Ask the user for the next move side
|
240 |
-
move_side = st.selectbox("Select the side to move:", ["w (White)", "b (Black)"])
|
241 |
-
move_side = "w" if move_side.startswith("w") else "b"
|
242 |
-
|
243 |
-
# Append the full FEN string continuation
|
244 |
-
fen_notation = f"{position_fen} {move_side} - - 0 0"
|
245 |
-
|
246 |
-
st.subheader("Generated FEN Notation:")
|
247 |
-
st.code(fen_notation)
|
248 |
-
|
249 |
-
# Initialize the Stockfish engine
|
250 |
-
stockfish = Stockfish(
|
251 |
-
path=
|
252 |
-
depth=15,
|
253 |
-
parameters={"Threads": 2, "Minimum Thinking Time": 30}
|
254 |
-
)
|
255 |
-
|
256 |
-
# Predict the next move
|
257 |
-
next_move = predict_next_move(fen_notation, stockfish)
|
258 |
-
st.subheader("Stockfish Recommended Move:")
|
259 |
-
st.write(next_move)
|
260 |
-
|
261 |
-
else:
|
262 |
-
st.error("Failed to process the image. Please try again.")
|
263 |
-
|
264 |
-
if __name__ == "__main__":
|
265 |
-
main()
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
import cv2
|
3 |
+
from stockfish import Stockfish
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
# Constants
|
9 |
+
FEN_MAPPING = {
|
10 |
+
"black-pawn": "p", "black-rook": "r", "black-knight": "n", "black-bishop": "b", "black-queen": "q", "black-king": "k",
|
11 |
+
"white-pawn": "P", "white-rook": "R", "white-knight": "N", "white-bishop": "B", "white-queen": "Q", "white-king": "K"
|
12 |
+
}
|
13 |
+
GRID_BORDER = 10 # Border size in pixels
|
14 |
+
GRID_SIZE = 204 # Effective grid size (10px to 214px)
|
15 |
+
BLOCK_SIZE = GRID_SIZE // 8 # Each block is ~25px
|
16 |
+
X_LABELS = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] # Labels for x-axis (a to h)
|
17 |
+
Y_LABELS = [8, 7, 6, 5, 4, 3, 2, 1] # Reversed labels for y-axis (8 to 1)
|
18 |
+
|
19 |
+
# Functions
|
20 |
+
def get_grid_coordinate(pixel_x, pixel_y):
|
21 |
+
"""
|
22 |
+
Function to determine the grid coordinate of a pixel, considering a 10px border and
|
23 |
+
the grid where bottom-left is (a, 1) and top-left is (h, 8).
|
24 |
+
"""
|
25 |
+
# Grid settings
|
26 |
+
border = 10 # 10px border
|
27 |
+
grid_size = 204 # Effective grid size (10px to 214px)
|
28 |
+
block_size = grid_size // 8 # Each block is ~25px
|
29 |
+
|
30 |
+
x_labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] # Labels for x-axis (a to h)
|
31 |
+
y_labels = [8, 7, 6, 5, 4, 3, 2, 1] # Reversed labels for y-axis (8 to 1)
|
32 |
+
|
33 |
+
# Adjust pixel_x and pixel_y by subtracting the border (grid starts at pixel 10)
|
34 |
+
adjusted_x = pixel_x - border
|
35 |
+
adjusted_y = pixel_y - border
|
36 |
+
|
37 |
+
# Check bounds
|
38 |
+
if adjusted_x < 0 or adjusted_y < 0 or adjusted_x >= grid_size or adjusted_y >= grid_size:
|
39 |
+
return "Pixel outside grid bounds"
|
40 |
+
|
41 |
+
# Determine the grid column and row
|
42 |
+
x_index = adjusted_x // block_size
|
43 |
+
y_index = adjusted_y // block_size
|
44 |
+
|
45 |
+
if x_index < 0 or x_index >= len(x_labels) or y_index < 0 or y_index >= len(y_labels):
|
46 |
+
return "Pixel outside grid bounds"
|
47 |
+
|
48 |
+
# Convert indices to grid coordinates
|
49 |
+
x_index = adjusted_x // block_size # Determine the column index (0-7)
|
50 |
+
y_index = adjusted_y // block_size # Determine the row index (0-7)
|
51 |
+
|
52 |
+
# Convert row index to the correct label, with '8' at the bottom
|
53 |
+
y_labeld = y_labels[y_index] # Correct index directly maps to '8' to '1'
|
54 |
+
x_label = x_labels[x_index]
|
55 |
+
y_label = 8 - y_labeld + 1
|
56 |
+
|
57 |
+
return f"{x_label}{y_label}"
|
58 |
+
|
59 |
+
def predict_next_move(fen, stockfish):
|
60 |
+
"""
|
61 |
+
Predict the next move using Stockfish.
|
62 |
+
"""
|
63 |
+
if stockfish.is_fen_valid(fen):
|
64 |
+
stockfish.set_fen_position(fen)
|
65 |
+
else:
|
66 |
+
return "Invalid FEN notation!"
|
67 |
+
|
68 |
+
best_move = stockfish.get_best_move()
|
69 |
+
ans = transform_string(best_move)
|
70 |
+
return f"The predicted next move is: {ans}" if best_move else "No valid move found (checkmate/stalemate)."
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
def process_image(image_path):
|
76 |
+
# Ensure output directory exists
|
77 |
+
if not os.path.exists('output'):
|
78 |
+
os.makedirs('output')
|
79 |
+
|
80 |
+
# Load the segmentation model
|
81 |
+
segmentation_model = YOLO("segmentation.pt")
|
82 |
+
|
83 |
+
# Run inference to get segmentation results
|
84 |
+
results = segmentation_model.predict(
|
85 |
+
source=image_path,
|
86 |
+
conf=0.8 # Confidence threshold
|
87 |
+
)
|
88 |
+
|
89 |
+
# Initialize variables for the segmented mask and bounding box
|
90 |
+
segmentation_mask = None
|
91 |
+
bbox = None
|
92 |
+
|
93 |
+
for result in results:
|
94 |
+
if result.boxes.conf[0] >= 0.8: # Filter results by confidence
|
95 |
+
segmentation_mask = result.masks.data.cpu().numpy().astype(np.uint8)[0]
|
96 |
+
bbox = result.boxes.xyxy[0].cpu().numpy() # Get the bounding box coordinates
|
97 |
+
break
|
98 |
+
|
99 |
+
if segmentation_mask is None:
|
100 |
+
print("No segmentation mask with confidence above 0.8 found.")
|
101 |
+
return None
|
102 |
+
|
103 |
+
# Load the image
|
104 |
+
image = cv2.imread(image_path)
|
105 |
+
|
106 |
+
# Resize segmentation mask to match the input image dimensions
|
107 |
+
segmentation_mask_resized = cv2.resize(segmentation_mask, (image.shape[1], image.shape[0]))
|
108 |
+
|
109 |
+
# Extract bounding box coordinates
|
110 |
+
if bbox is not None:
|
111 |
+
x1, y1, x2, y2 = bbox
|
112 |
+
# Crop the segmented region based on the bounding box
|
113 |
+
cropped_segment = image[int(y1):int(y2), int(x1):int(x2)]
|
114 |
+
|
115 |
+
# Save the cropped segmented image
|
116 |
+
cropped_image_path = 'output/cropped_segment.jpg'
|
117 |
+
cv2.imwrite(cropped_image_path, cropped_segment)
|
118 |
+
print(f"Cropped segmented image saved to {cropped_image_path}")
|
119 |
+
|
120 |
+
st.image(cropped_segment, caption="Uploaded Image", use_column_width=True)
|
121 |
+
# Return the cropped image
|
122 |
+
return cropped_segment
|
123 |
+
|
124 |
+
def transform_string(input_str):
|
125 |
+
# Remove extra spaces and convert to lowercase
|
126 |
+
input_str = input_str.strip().lower()
|
127 |
+
|
128 |
+
# Check if input is valid
|
129 |
+
if len(input_str) != 4 or not input_str[0].isalpha() or not input_str[1].isdigit() or \
|
130 |
+
not input_str[2].isalpha() or not input_str[3].isdigit():
|
131 |
+
return "Invalid input"
|
132 |
+
|
133 |
+
# Define mappings
|
134 |
+
letter_mapping = {
|
135 |
+
'a': 'h', 'b': 'g', 'c': 'f', 'd': 'e',
|
136 |
+
'e': 'd', 'f': 'c', 'g': 'b', 'h': 'a'
|
137 |
+
}
|
138 |
+
number_mapping = {
|
139 |
+
'1': '8', '2': '7', '3': '6', '4': '5',
|
140 |
+
'5': '4', '6': '3', '7': '2', '8': '1'
|
141 |
+
}
|
142 |
+
|
143 |
+
# Transform string
|
144 |
+
result = ""
|
145 |
+
for i, char in enumerate(input_str):
|
146 |
+
if i % 2 == 0: # Letters
|
147 |
+
result += letter_mapping.get(char, "Invalid")
|
148 |
+
else: # Numbers
|
149 |
+
result += number_mapping.get(char, "Invalid")
|
150 |
+
|
151 |
+
# Check for invalid transformations
|
152 |
+
if "Invalid" in result:
|
153 |
+
return "Invalid input"
|
154 |
+
|
155 |
+
return result
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
# Streamlit app
|
160 |
+
def main():
|
161 |
+
st.title("Chessboard Position Detection and Move Prediction")
|
162 |
+
|
163 |
+
# User uploads an image or captures it from their camera
|
164 |
+
image_file = st.camera_input("Capture a chessboard image") or st.file_uploader("Upload a chessboard image", type=["jpg", "jpeg", "png"])
|
165 |
+
|
166 |
+
if image_file is not None:
|
167 |
+
# Save the image to a temporary file
|
168 |
+
temp_dir = "temp_images"
|
169 |
+
os.makedirs(temp_dir, exist_ok=True)
|
170 |
+
temp_file_path = os.path.join(temp_dir, "uploaded_image.jpg")
|
171 |
+
with open(temp_file_path, "wb") as f:
|
172 |
+
f.write(image_file.getbuffer())
|
173 |
+
|
174 |
+
# Process the image using its file path
|
175 |
+
processed_image = process_image(temp_file_path)
|
176 |
+
|
177 |
+
if processed_image is not None:
|
178 |
+
# Resize the image to 224x224
|
179 |
+
processed_image = cv2.resize(processed_image, (224, 224))
|
180 |
+
height, width, _ = processed_image.shape
|
181 |
+
|
182 |
+
# Initialize the YOLO model
|
183 |
+
model = YOLO("standard.pt") # Replace with your trained model weights file
|
184 |
+
|
185 |
+
# Run detection
|
186 |
+
results = model.predict(source=processed_image, save=False, save_txt=False, conf=0.6)
|
187 |
+
|
188 |
+
# Initialize the board for FEN (empty rows represented by "8")
|
189 |
+
board = [["8"] * 8 for _ in range(8)]
|
190 |
+
|
191 |
+
# Extract predictions and map to FEN board
|
192 |
+
for result in results[0].boxes:
|
193 |
+
x1, y1, x2, y2 = result.xyxy[0].tolist()
|
194 |
+
class_id = int(result.cls[0])
|
195 |
+
class_name = model.names[class_id]
|
196 |
+
|
197 |
+
# Convert class_name to FEN notation
|
198 |
+
fen_piece = FEN_MAPPING.get(class_name, None)
|
199 |
+
if not fen_piece:
|
200 |
+
continue
|
201 |
+
|
202 |
+
# Calculate the center of the bounding box
|
203 |
+
center_x = (x1 + x2) / 2
|
204 |
+
center_y = (y1 + y2) / 2
|
205 |
+
|
206 |
+
# Convert to integer pixel coordinates
|
207 |
+
pixel_x = int(center_x)
|
208 |
+
pixel_y = int(height - center_y) # Flip Y-axis for generic coordinate system
|
209 |
+
|
210 |
+
# Get grid coordinate
|
211 |
+
grid_position = get_grid_coordinate(pixel_x, pixel_y)
|
212 |
+
|
213 |
+
if grid_position != "Pixel outside grid bounds":
|
214 |
+
file = ord(grid_position[0]) - ord('a') # Column index (0-7)
|
215 |
+
rank = int(grid_position[1]) - 1 # Row index (0-7)
|
216 |
+
|
217 |
+
# Place the piece on the board
|
218 |
+
board[7 - rank][file] = fen_piece # Flip rank index for FEN
|
219 |
+
|
220 |
+
# Generate the FEN string
|
221 |
+
fen_rows = []
|
222 |
+
for row in board:
|
223 |
+
fen_row = ""
|
224 |
+
empty_count = 0
|
225 |
+
for cell in row:
|
226 |
+
if cell == "8":
|
227 |
+
empty_count += 1
|
228 |
+
else:
|
229 |
+
if empty_count > 0:
|
230 |
+
fen_row += str(empty_count)
|
231 |
+
empty_count = 0
|
232 |
+
fen_row += cell
|
233 |
+
if empty_count > 0:
|
234 |
+
fen_row += str(empty_count)
|
235 |
+
fen_rows.append(fen_row)
|
236 |
+
|
237 |
+
position_fen = "/".join(fen_rows)
|
238 |
+
|
239 |
+
# Ask the user for the next move side
|
240 |
+
move_side = st.selectbox("Select the side to move:", ["w (White)", "b (Black)"])
|
241 |
+
move_side = "w" if move_side.startswith("w") else "b"
|
242 |
+
|
243 |
+
# Append the full FEN string continuation
|
244 |
+
fen_notation = f"{position_fen} {move_side} - - 0 0"
|
245 |
+
|
246 |
+
st.subheader("Generated FEN Notation:")
|
247 |
+
st.code(fen_notation)
|
248 |
+
|
249 |
+
# Initialize the Stockfish engine
|
250 |
+
stockfish = Stockfish(
|
251 |
+
path="stockfish-windows-x86-64-avx2.exe", # Replace with your Stockfish path"
|
252 |
+
depth=15,
|
253 |
+
parameters={"Threads": 2, "Minimum Thinking Time": 30}
|
254 |
+
)
|
255 |
+
|
256 |
+
# Predict the next move
|
257 |
+
next_move = predict_next_move(fen_notation, stockfish)
|
258 |
+
st.subheader("Stockfish Recommended Move:")
|
259 |
+
st.write(next_move)
|
260 |
+
|
261 |
+
else:
|
262 |
+
st.error("Failed to process the image. Please try again.")
|
263 |
+
|
264 |
+
if __name__ == "__main__":
|
265 |
+
main()
|