File size: 20,354 Bytes
5f5d58c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from __future__ import annotations

import warnings
from typing import Any, Callable

from gradio.components.base import FormComponent
from gradio.events import Events

from gradio.events import Dependency

class SimpleDropdown(FormComponent):
    """
    Creates a very simple dropdown listing choices from which entries can be selected.
    Preprocessing: Preprocessing: passes the value of the selected dropdown entry as a {str}.
    Postprocessing: expects a {str} corresponding to the value of the dropdown entry to be selected.
    Examples-format: a {str} representing the drop down value to select.
    Demos: sentence_builder, titanic_survival
    """

    EVENTS = [Events.change, Events.input, Events.select]

    def __init__(
        self,
        choices: list[str | int | float | tuple[str, str | int | float]] | None = None,
        *,
        value: str | int | float | Callable | None = None,
        label: str | None = None,
        info: str | None = None,
        every: float | None = None,
        show_label: bool | None = None,
        scale: int | None = None,
        min_width: int = 160,
        interactive: bool | None = None,
        visible: bool = True,
        elem_id: str | None = None,
        elem_classes: list[str] | str | None = None,
        render: bool = True,
    ):
        """
        Parameters:
            choices: A list of string options to choose from. An option can also be a tuple of the form (name, value), where name is the displayed name of the dropdown choice and value is the value to be passed to the function, or returned by the function.
            value: default value selected in dropdown. If None, no value is selected by default. If callable, the function will be called whenever the app loads to set the initial value of the component.
            label: component name in interface.
            info: additional component description.
            every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
            show_label: if True, will display label.
            scale: relative width compared to adjacent Components in a Row. For example, if Component A has scale=2, and Component B has scale=1, A will be twice as wide as B. Should be an integer.
            min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
            interactive: if True, choices in this dropdown will be selectable; if False, selection will be disabled. If not provided, this is inferred based on whether the component is used as an input or output.
            visible: If False, component will be hidden.
            elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
            elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
                    render: bool = True,
        """
        self.choices = (
            # Although we expect choices to be a list of lists, it can be a list of tuples if the Gradio app
            # is loaded with gr.load() since Python tuples are converted to lists in JSON.
            [tuple(c) if isinstance(c, (tuple, list)) else (str(c), c) for c in choices]
            if choices
            else []
        )
        super().__init__(
            label=label,
            info=info,
            every=every,
            show_label=show_label,
            scale=scale,
            min_width=min_width,
            interactive=interactive,
            visible=visible,
            elem_id=elem_id,
            elem_classes=elem_classes,
            value=value,
            render=render,
        )

    def api_info(self) -> dict[str, Any]:
        return {
            "type": "string",
            "enum": [c[1] for c in self.choices],
        }

    def example_inputs(self) -> Any:
        return self.choices[0][1] if self.choices else None

    def preprocess(self, x: str | int | float | None) -> str | int | float | None:
        """
        Parameters:
            x: selected choice
        Returns:
            selected choice
        """
        return x

    def _warn_if_invalid_choice(self, y):
        if y not in [value for _, value in self.choices]:
            warnings.warn(
                f"The value passed into gr.Dropdown() is not in the list of choices. Please update the list of choices to include: {y}."
            )

    def postprocess(self, y):
        if y is None:
            return None
        self._warn_if_invalid_choice(y)
        return y

    def as_example(self, input_data):
        return next((c[0] for c in self.choices if c[1] == input_data), None)

    
    def change(self,
        fn: Callable | None,
        inputs: Component | Sequence[Component] | set[Component] | None = None,
        outputs: Component | Sequence[Component] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: If True, will scroll to output component on completion
            show_progress: If True, will show progress animation while pending
            queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
            trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` event) would allow a second submission after the pending event is complete.
            js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps to use this event. If fn is None, show_api will automatically be set to False.
        """
        ...
    
    def input(self,
        fn: Callable | None,
        inputs: Component | Sequence[Component] | set[Component] | None = None,
        outputs: Component | Sequence[Component] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: If True, will scroll to output component on completion
            show_progress: If True, will show progress animation while pending
            queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
            trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` event) would allow a second submission after the pending event is complete.
            js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps to use this event. If fn is None, show_api will automatically be set to False.
        """
        ...
    
    def select(self,
        fn: Callable | None,
        inputs: Component | Sequence[Component] | set[Component] | None = None,
        outputs: Component | Sequence[Component] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: If True, will scroll to output component on completion
            show_progress: If True, will show progress animation while pending
            queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled.
            trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` event) would allow a second submission after the pending event is complete.
            js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps to use this event. If fn is None, show_api will automatically be set to False.
        """
        ...