Update v2.txt
Browse files
v2.txt
CHANGED
@@ -3,7 +3,6 @@ import pandas as pd
|
|
3 |
import aiohttp
|
4 |
import asyncio
|
5 |
import json
|
6 |
-
import io
|
7 |
import os
|
8 |
import numpy as np
|
9 |
import plotly.express as px
|
@@ -12,10 +11,8 @@ from typing import Optional, Tuple, Dict, Any
|
|
12 |
import logging
|
13 |
from datetime import datetime
|
14 |
import re
|
15 |
-
import
|
16 |
-
|
17 |
-
import weasyprint # For PDF generation
|
18 |
-
from jinja2 import Template # For HTML templating
|
19 |
|
20 |
# Configure logging
|
21 |
logging.basicConfig(level=logging.INFO)
|
@@ -86,12 +83,12 @@ Format your response with clear sections and bullet points for readability."""
|
|
86 |
],
|
87 |
"stream": True,
|
88 |
"max_tokens": 3000,
|
89 |
-
"temperature": 0.2,
|
90 |
"top_p": 0.9
|
91 |
}
|
92 |
|
93 |
try:
|
94 |
-
timeout = aiohttp.ClientTimeout(total=30)
|
95 |
async with aiohttp.ClientSession(timeout=timeout) as session:
|
96 |
async with session.post(self.api_base_url, headers=headers, json=body) as response:
|
97 |
if response.status == 401:
|
@@ -131,9 +128,7 @@ Format your response with clear sections and bullet points for readability."""
|
|
131 |
try:
|
132 |
file_extension = os.path.splitext(file_path)[1].lower()
|
133 |
|
134 |
-
# Read file with better error handling
|
135 |
if file_extension == '.csv':
|
136 |
-
# Try different encodings
|
137 |
for encoding in ['utf-8', 'latin-1', 'cp1252']:
|
138 |
try:
|
139 |
df = pd.read_csv(file_path, encoding=encoding)
|
@@ -147,13 +142,8 @@ Format your response with clear sections and bullet points for readability."""
|
|
147 |
else:
|
148 |
raise ValueError("Unsupported file format. Please upload CSV or Excel files.")
|
149 |
|
150 |
-
# Clean column names
|
151 |
df.columns = df.columns.str.strip().str.replace(r'\s+', ' ', regex=True)
|
152 |
-
|
153 |
-
# Store dataframe for visualizations
|
154 |
self.current_df = df
|
155 |
-
|
156 |
-
# Generate enhanced summaries
|
157 |
data_summary = self.generate_enhanced_summary(df)
|
158 |
charts_html = self.generate_visualizations(df)
|
159 |
|
@@ -165,23 +155,17 @@ Format your response with clear sections and bullet points for readability."""
|
|
165 |
def generate_enhanced_summary(self, df: pd.DataFrame) -> str:
|
166 |
"""Generate comprehensive data summary with statistical insights"""
|
167 |
summary = []
|
168 |
-
|
169 |
-
# Header with timestamp
|
170 |
summary.append(f"# π Dataset Analysis Report")
|
171 |
summary.append(f"**Generated**: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
172 |
summary.append(f"**File Size**: {df.shape[0]:,} rows Γ {df.shape[1]} columns")
|
173 |
-
|
174 |
-
# Memory usage
|
175 |
memory_usage = df.memory_usage(deep=True).sum() / 1024**2
|
176 |
summary.append(f"**Memory Usage**: {memory_usage:.2f} MB\n")
|
177 |
|
178 |
-
# Data types breakdown
|
179 |
type_counts = df.dtypes.value_counts()
|
180 |
summary.append("## π Column Types:")
|
181 |
for dtype, count in type_counts.items():
|
182 |
summary.append(f"- **{dtype}**: {count} columns")
|
183 |
|
184 |
-
# Missing data analysis
|
185 |
missing_data = df.isnull().sum()
|
186 |
missing_pct = (missing_data / len(df) * 100).round(2)
|
187 |
missing_summary = missing_data[missing_data > 0].sort_values(ascending=False)
|
@@ -194,26 +178,23 @@ Format your response with clear sections and bullet points for readability."""
|
|
194 |
else:
|
195 |
summary.append("\n## β
Data Quality: No missing values detected!")
|
196 |
|
197 |
-
# Numerical analysis
|
198 |
numeric_cols = df.select_dtypes(include=[np.number]).columns
|
199 |
if len(numeric_cols) > 0:
|
200 |
summary.append(f"\n## π Numerical Columns Analysis ({len(numeric_cols)} columns):")
|
201 |
-
for col in numeric_cols[:10]:
|
202 |
stats = df[col].describe()
|
203 |
outliers = len(df[df[col] > (stats['75%'] + 1.5 * (stats['75%'] - stats['25%']))])
|
204 |
summary.append(f"- **{col}**: ΞΌ={stats['mean']:.2f}, Ο={stats['std']:.2f}, outliers={outliers}")
|
205 |
|
206 |
-
# Categorical analysis
|
207 |
categorical_cols = df.select_dtypes(include=['object', 'category']).columns
|
208 |
if len(categorical_cols) > 0:
|
209 |
summary.append(f"\n## π Categorical Columns Analysis ({len(categorical_cols)} columns):")
|
210 |
-
for col in categorical_cols[:10]:
|
211 |
unique_count = df[col].nunique()
|
212 |
cardinality = "High" if unique_count > len(df) * 0.9 else "Medium" if unique_count > 10 else "Low"
|
213 |
most_common = df[col].mode().iloc[0] if len(df[col].mode()) > 0 else "N/A"
|
214 |
summary.append(f"- **{col}**: {unique_count:,} unique values ({cardinality} cardinality), Top: '{most_common}'")
|
215 |
|
216 |
-
# Sample data with better formatting
|
217 |
summary.append("\n## π Data Sample (First 3 Rows):")
|
218 |
sample_df = df.head(3)
|
219 |
for idx, row in sample_df.iterrows():
|
@@ -228,7 +209,6 @@ Format your response with clear sections and bullet points for readability."""
|
|
228 |
charts_html = []
|
229 |
|
230 |
try:
|
231 |
-
# Chart 1: Data completeness analysis
|
232 |
missing_data = df.isnull().sum()
|
233 |
if missing_data.sum() > 0:
|
234 |
fig = px.bar(
|
@@ -248,7 +228,6 @@ Format your response with clear sections and bullet points for readability."""
|
|
248 |
charts_html.append(f"<h3>π Data Quality Overview</h3>")
|
249 |
charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id="missing_data_chart"))
|
250 |
|
251 |
-
# Chart 2: Numerical columns correlation heatmap
|
252 |
numeric_cols = df.select_dtypes(include=[np.number]).columns
|
253 |
if len(numeric_cols) > 1:
|
254 |
corr_matrix = df[numeric_cols].corr()
|
@@ -263,9 +242,8 @@ Format your response with clear sections and bullet points for readability."""
|
|
263 |
charts_html.append(f"<h3>π Correlation Analysis</h3>")
|
264 |
charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id="correlation_chart"))
|
265 |
|
266 |
-
# Chart 3: Distribution plots for numerical columns
|
267 |
if len(numeric_cols) > 0:
|
268 |
-
for i, col in enumerate(numeric_cols[:3]):
|
269 |
fig = px.histogram(
|
270 |
df,
|
271 |
x=col,
|
@@ -278,11 +256,10 @@ Format your response with clear sections and bullet points for readability."""
|
|
278 |
charts_html.append(f"<h3>π Data Distributions</h3>")
|
279 |
charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id=f"dist_chart_{i}"))
|
280 |
|
281 |
-
# Chart 4: Categorical analysis
|
282 |
categorical_cols = df.select_dtypes(include=['object', 'category']).columns
|
283 |
if len(categorical_cols) > 0:
|
284 |
-
for i, col in enumerate(categorical_cols[:2]):
|
285 |
-
if df[col].nunique() <= 20:
|
286 |
value_counts = df[col].value_counts().head(10)
|
287 |
fig = px.bar(
|
288 |
x=value_counts.values,
|
@@ -296,7 +273,6 @@ Format your response with clear sections and bullet points for readability."""
|
|
296 |
charts_html.append(f"<h3>π Categorical Data Analysis</h3>")
|
297 |
charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id=f"cat_chart_{i}"))
|
298 |
|
299 |
-
# Chart 5: Data overview summary
|
300 |
summary_data = {
|
301 |
'Metric': ['Total Rows', 'Total Columns', 'Numeric Columns', 'Categorical Columns', 'Missing Values'],
|
302 |
'Count': [
|
@@ -320,9 +296,7 @@ Format your response with clear sections and bullet points for readability."""
|
|
320 |
charts_html.append(f"<h3>π Dataset Overview</h3>")
|
321 |
charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id="overview_chart"))
|
322 |
|
323 |
-
# Store charts for export
|
324 |
self.current_charts = charts_html
|
325 |
-
|
326 |
return "\n".join(charts_html) if charts_html else "<p>No charts could be generated for this dataset.</p>"
|
327 |
|
328 |
except Exception as e:
|
@@ -330,8 +304,7 @@ Format your response with clear sections and bullet points for readability."""
|
|
330 |
return f"<p>β Chart generation failed: {str(e)}</p>"
|
331 |
|
332 |
def generate_report_html(self, analysis_text: str, data_summary: str, file_name: str = "Unknown") -> str:
|
333 |
-
"""Generate HTML report with
|
334 |
-
|
335 |
html_template = """
|
336 |
<!DOCTYPE html>
|
337 |
<html>
|
@@ -370,7 +343,11 @@ Format your response with clear sections and bullet points for readability."""
|
|
370 |
border-radius: 8px;
|
371 |
border-left: 4px solid #667eea;
|
372 |
}
|
373 |
-
h1, h2, h3 {
|
|
|
|
|
|
|
|
|
374 |
.metadata {
|
375 |
background: #e8f4f8;
|
376 |
padding: 15px;
|
@@ -391,8 +368,60 @@ Format your response with clear sections and bullet points for readability."""
|
|
391 |
border-radius: 5px;
|
392 |
overflow-x: auto;
|
393 |
white-space: pre-wrap;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
}
|
395 |
</style>
|
|
|
|
|
|
|
|
|
|
|
396 |
</head>
|
397 |
<body>
|
398 |
<div class="header">
|
@@ -403,11 +432,12 @@ Format your response with clear sections and bullet points for readability."""
|
|
403 |
<div class="metadata">
|
404 |
<strong>π File:</strong> {{ file_name }}<br>
|
405 |
<strong>π
Generated:</strong> {{ timestamp }}<br>
|
406 |
-
<strong>π€ Model:</strong> OpenAI gpt-oss-20b
|
407 |
</div>
|
408 |
|
409 |
<div class="section">
|
410 |
<h2>π― AI Analysis & Insights</h2>
|
|
|
411 |
<div>{{ ai_analysis }}</div>
|
412 |
</div>
|
413 |
|
@@ -424,21 +454,15 @@ Format your response with clear sections and bullet points for readability."""
|
|
424 |
</div>
|
425 |
|
426 |
<div class="footer">
|
427 |
-
<p>Report generated by Smart Data Analyzer Pro β’ Powered by AI</p>
|
428 |
-
<p>For questions or support,
|
429 |
</div>
|
430 |
</body>
|
431 |
</html>
|
432 |
"""
|
433 |
|
434 |
template = Template(html_template)
|
435 |
-
|
436 |
-
# Convert markdown to HTML for AI analysis
|
437 |
-
ai_analysis_html = analysis_text.replace('\n', '<br>')
|
438 |
-
ai_analysis_html = re.sub(r'\*\*(.*?)\*\*', r'<strong>\1</strong>', ai_analysis_html)
|
439 |
-
ai_analysis_html = re.sub(r'## (.*?)\n', r'<h3>\1</h3>', ai_analysis_html)
|
440 |
-
ai_analysis_html = re.sub(r'# (.*?)\n', r'<h2>\1</h2>', ai_analysis_html)
|
441 |
-
|
442 |
charts_content = "\n".join(self.current_charts) if self.current_charts else "<p>No visualizations available</p>"
|
443 |
|
444 |
return template.render(
|
@@ -449,50 +473,37 @@ Format your response with clear sections and bullet points for readability."""
|
|
449 |
data_summary=data_summary
|
450 |
)
|
451 |
|
452 |
-
# Initialize the analyzer
|
453 |
analyzer = EnhancedDataAnalyzer()
|
454 |
|
455 |
async def analyze_data(file, api_key, user_question="", progress=gr.Progress()):
|
456 |
-
"""Enhanced analysis function with progress tracking"""
|
457 |
if not file:
|
458 |
return "β Please upload a CSV or Excel file.", "", "", "", None
|
459 |
|
460 |
if not analyzer.validate_api_key(api_key):
|
461 |
return "β Please enter a valid Chutes API key (minimum 10 characters).", "", "", "", None
|
462 |
|
463 |
-
# Validate file
|
464 |
is_valid, validation_msg = analyzer.validate_file(file)
|
465 |
if not is_valid:
|
466 |
return f"β {validation_msg}", "", "", "", None
|
467 |
|
468 |
progress(0.1, desc="π Reading file...")
|
469 |
-
|
470 |
try:
|
471 |
-
# Process the uploaded file
|
472 |
df, data_summary, charts_html = analyzer.process_file(file.name)
|
473 |
progress(0.3, desc="π Processing data...")
|
474 |
-
|
475 |
progress(0.5, desc="π€ Generating AI insights...")
|
476 |
-
|
477 |
-
# Get AI analysis
|
478 |
ai_analysis = await analyzer.analyze_with_chutes(api_key, data_summary, user_question)
|
479 |
progress(0.9, desc="β¨ Finalizing results...")
|
480 |
|
481 |
-
# Format the complete response
|
482 |
response = f"""# π― Analysis Complete!
|
483 |
{ai_analysis}
|
484 |
---
|
485 |
*Analysis powered by OpenAI gpt-oss-20b via Chutes β’ Generated at {datetime.now().strftime('%H:%M:%S')}*
|
486 |
"""
|
487 |
-
|
488 |
-
# Generate data preview
|
489 |
data_preview_html = df.head(15).to_html(
|
490 |
classes="table table-striped table-hover",
|
491 |
table_id="data-preview-table",
|
492 |
escape=False
|
493 |
)
|
494 |
-
|
495 |
-
# Add some styling to the preview
|
496 |
styled_preview = f"""
|
497 |
<style>
|
498 |
#data-preview-table {{
|
@@ -527,17 +538,14 @@ async def analyze_data(file, api_key, user_question="", progress=gr.Progress()):
|
|
527 |
return f"β **Error**: {str(e)}", "", "", "", None
|
528 |
|
529 |
def sync_analyze_data(file, api_key, user_question="", progress=gr.Progress()):
|
530 |
-
"""Synchronous wrapper for the async analyze function"""
|
531 |
return asyncio.run(analyze_data(file, api_key, user_question, progress))
|
532 |
|
533 |
def clear_all():
|
534 |
-
"""Clear all inputs and outputs"""
|
535 |
analyzer.current_df = None
|
536 |
analyzer.current_charts = None
|
537 |
return None, "", "", "", "", "", "", None
|
538 |
|
539 |
def download_report(analysis_text, data_summary, file_name, format_choice):
|
540 |
-
"""Generate downloadable report in PDF or HTML format"""
|
541 |
if not analysis_text:
|
542 |
return None, "β No analysis data available for download."
|
543 |
|
@@ -546,26 +554,13 @@ def download_report(analysis_text, data_summary, file_name, format_choice):
|
|
546 |
|
547 |
try:
|
548 |
if format_choice == "HTML":
|
549 |
-
# Generate HTML report
|
550 |
html_content = analyzer.generate_report_html(analysis_text, data_summary, file_name)
|
551 |
filename = f"{file_base_name}_analysis_report_{timestamp}.html"
|
552 |
-
|
553 |
with open(filename, 'w', encoding='utf-8') as f:
|
554 |
f.write(html_content)
|
555 |
-
|
556 |
return filename, f"β
HTML report generated successfully! File: {filename}"
|
557 |
|
558 |
-
|
559 |
-
# Generate PDF report
|
560 |
-
html_content = analyzer.generate_report_html(analysis_text, data_summary, file_name)
|
561 |
-
filename = f"{file_base_name}_analysis_report_{timestamp}.pdf"
|
562 |
-
|
563 |
-
# Convert HTML to PDF using weasyprint
|
564 |
-
weasyprint.HTML(string=html_content).write_pdf(filename)
|
565 |
-
|
566 |
-
return filename, f"β
PDF report generated successfully! File: {filename}"
|
567 |
-
|
568 |
-
else: # Markdown fallback
|
569 |
report = f"""# Data Analysis Report
|
570 |
Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
571 |
File: {file_name}
|
@@ -577,14 +572,12 @@ File: {file_name}
|
|
577 |
filename = f"{file_base_name}_analysis_report_{timestamp}.md"
|
578 |
with open(filename, 'w', encoding='utf-8') as f:
|
579 |
f.write(report)
|
580 |
-
|
581 |
return filename, f"β
Markdown report generated successfully! File: {filename}"
|
582 |
|
583 |
except Exception as e:
|
584 |
logger.error(f"Report generation error: {str(e)}")
|
585 |
return None, f"β Error generating report: {str(e)}"
|
586 |
|
587 |
-
# Create enhanced Gradio interface
|
588 |
with gr.Blocks(
|
589 |
title="π Smart Data Analyzer Pro",
|
590 |
theme=gr.themes.Ocean(),
|
@@ -602,33 +595,20 @@ with gr.Blocks(
|
|
602 |
text-align: center;
|
603 |
background: #f8f9ff;
|
604 |
}
|
605 |
-
.charts-container {
|
606 |
-
max-height: 800px;
|
607 |
-
overflow-y: auto;
|
608 |
-
padding: 10px;
|
609 |
-
background: #fafafa;
|
610 |
-
border-radius: 8px;
|
611 |
-
}
|
612 |
"""
|
613 |
) as app:
|
614 |
-
|
615 |
-
# Store file name for downloads
|
616 |
current_file_name = gr.State("")
|
617 |
|
618 |
-
# Header
|
619 |
gr.Markdown("""
|
620 |
# π Smart Data Analyzer Pro
|
621 |
### AI-Powered Excel & CSV Analysis with OpenAI gpt-oss-20b
|
622 |
|
623 |
-
Upload your data files and get instant professional insights
|
624 |
""")
|
625 |
|
626 |
-
# Main interface
|
627 |
with gr.Row():
|
628 |
with gr.Column(scale=1):
|
629 |
-
# Configuration section
|
630 |
gr.Markdown("### βοΈ Configuration")
|
631 |
-
|
632 |
api_key_input = gr.Textbox(
|
633 |
label="π Chutes API Key",
|
634 |
placeholder="sk-chutes-your-api-key-here...",
|
@@ -636,19 +616,15 @@ with gr.Blocks(
|
|
636 |
lines=1,
|
637 |
info="Get your free API key from chutes.ai"
|
638 |
)
|
639 |
-
|
640 |
file_input = gr.File(
|
641 |
label="π Upload Data File",
|
642 |
file_types=[".csv", ".xlsx", ".xls"],
|
643 |
file_count="single",
|
644 |
elem_classes=["upload-area"]
|
645 |
)
|
646 |
-
|
647 |
with gr.Row():
|
648 |
analyze_btn = gr.Button("π Analyze Data", variant="primary", size="lg")
|
649 |
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
|
650 |
-
|
651 |
-
# Quick stats display
|
652 |
with gr.Group():
|
653 |
gr.Markdown("### π Quick Stats")
|
654 |
file_stats = gr.Textbox(
|
@@ -659,15 +635,12 @@ with gr.Blocks(
|
|
659 |
)
|
660 |
|
661 |
with gr.Column(scale=2):
|
662 |
-
# Results section
|
663 |
gr.Markdown("### π― Analysis Results")
|
664 |
-
|
665 |
analysis_output = gr.Markdown(
|
666 |
value="π **Ready to analyze your data!**\n\nUpload a CSV or Excel file and click 'Analyze Data' to get started.",
|
667 |
show_label=False
|
668 |
)
|
669 |
|
670 |
-
# Advanced features in tabs
|
671 |
with gr.Tabs():
|
672 |
with gr.Tab("π¬ Ask Questions"):
|
673 |
question_input = gr.Textbox(
|
@@ -684,14 +657,6 @@ with gr.Blocks(
|
|
684 |
value="<p>Upload a file to see data preview...</p>"
|
685 |
)
|
686 |
|
687 |
-
with gr.Tab("π Visualizations"):
|
688 |
-
charts_output = gr.HTML(
|
689 |
-
label="Auto-Generated Charts",
|
690 |
-
value="<div class='charts-container'><p>π Interactive charts will appear here after analysis...</p></div>",
|
691 |
-
elem_classes=["charts-container"],
|
692 |
-
visible=False
|
693 |
-
)
|
694 |
-
|
695 |
with gr.Tab("π Raw Summary"):
|
696 |
raw_summary = gr.Textbox(
|
697 |
label="Detailed Data Summary",
|
@@ -702,56 +667,47 @@ with gr.Blocks(
|
|
702 |
|
703 |
with gr.Tab("πΎ Export Reports"):
|
704 |
gr.Markdown("### π₯ Download Your Analysis Report")
|
705 |
-
|
706 |
with gr.Row():
|
707 |
format_choice = gr.Radio(
|
708 |
-
choices=["HTML", "
|
709 |
value="HTML",
|
710 |
label="π Report Format",
|
711 |
info="Choose your preferred download format"
|
712 |
)
|
713 |
-
|
714 |
download_btn = gr.Button("π₯ Generate & Download Report", variant="primary", size="lg")
|
715 |
download_status = gr.Textbox(label="Download Status", interactive=False)
|
716 |
download_file = gr.File(label="π Download Link", visible=True)
|
717 |
|
718 |
-
# Event handlers
|
719 |
def update_file_stats(file):
|
720 |
if not file:
|
721 |
return "No file uploaded"
|
722 |
-
|
723 |
try:
|
724 |
-
file_size = os.path.getsize(file.name) / (1024 * 1024)
|
725 |
file_name = os.path.basename(file.name)
|
726 |
return f"π **File**: {file_name}\nπ **Size**: {file_size:.2f} MB\nβ° **Uploaded**: {datetime.now().strftime('%H:%M:%S')}"
|
727 |
except:
|
728 |
return "File information unavailable"
|
729 |
|
730 |
def handle_analysis(file, api_key, user_question="", progress=gr.Progress()):
|
731 |
-
"""Handle main analysis and return all outputs including file name"""
|
732 |
result = sync_analyze_data(file, api_key, user_question, progress)
|
733 |
-
if len(result) == 5:
|
734 |
-
return result[0], result[1], result[2], result[
|
735 |
else:
|
736 |
-
return result[0], result[1], result[2],
|
737 |
|
738 |
def handle_question_analysis(file, api_key, question, progress=gr.Progress()):
|
739 |
-
"""Handle question-specific analysis"""
|
740 |
if not question.strip():
|
741 |
return "β Please enter a specific question about your data."
|
742 |
-
|
743 |
result = sync_analyze_data(file, api_key, question, progress)
|
744 |
-
return result[0]
|
745 |
|
746 |
-
# Main analysis event
|
747 |
analyze_btn.click(
|
748 |
fn=handle_analysis,
|
749 |
inputs=[file_input, api_key_input, gr.Textbox(value="", visible=False)],
|
750 |
-
outputs=[analysis_output, raw_summary, data_preview,
|
751 |
show_progress=True
|
752 |
)
|
753 |
|
754 |
-
# Follow-up questions
|
755 |
ask_btn.click(
|
756 |
fn=handle_question_analysis,
|
757 |
inputs=[file_input, api_key_input, question_input],
|
@@ -759,28 +715,24 @@ with gr.Blocks(
|
|
759 |
show_progress=True
|
760 |
)
|
761 |
|
762 |
-
# File stats update
|
763 |
file_input.change(
|
764 |
fn=update_file_stats,
|
765 |
inputs=[file_input],
|
766 |
outputs=[file_stats]
|
767 |
)
|
768 |
|
769 |
-
# Clear functionality
|
770 |
clear_btn.click(
|
771 |
fn=clear_all,
|
772 |
outputs=[file_input, api_key_input, question_input, analysis_output,
|
773 |
-
question_output, data_preview,
|
774 |
)
|
775 |
|
776 |
-
# Enhanced download functionality
|
777 |
download_btn.click(
|
778 |
fn=download_report,
|
779 |
inputs=[analysis_output, raw_summary, current_file_name, format_choice],
|
780 |
outputs=[download_file, download_status]
|
781 |
)
|
782 |
|
783 |
-
# Footer with usage tips
|
784 |
gr.Markdown("""
|
785 |
---
|
786 |
### π‘ Pro Tips for Better Analysis:
|
@@ -790,16 +742,8 @@ with gr.Blocks(
|
|
790 |
- Use descriptive column names
|
791 |
- Ask specific questions like "What drives the highest profits?" instead of "Analyze this data"
|
792 |
|
793 |
-
**π Visualizations Include:**
|
794 |
-
- Missing data analysis
|
795 |
-
- Correlation matrices for numerical data
|
796 |
-
- Distribution plots and histograms
|
797 |
-
- Top categories for categorical data
|
798 |
-
- Dataset overview metrics
|
799 |
-
|
800 |
**π₯ Export Options:**
|
801 |
-
- **HTML**: Interactive report with embedded charts
|
802 |
-
- **PDF**: Professional report for presentations
|
803 |
- **Markdown**: Simple text format for documentation
|
804 |
|
805 |
**β‘ Speed Optimization:**
|
@@ -810,13 +754,6 @@ with gr.Blocks(
|
|
810 |
**π§ Supported Formats:** CSV, XLSX, XLS | **π Max Size:** 50MB | **π Response Time:** ~3-5 seconds
|
811 |
""")
|
812 |
|
813 |
-
def sync_analyze_data(file, api_key, user_question="", progress=gr.Progress()):
|
814 |
-
"""Synchronous wrapper for the async analyze function"""
|
815 |
-
return asyncio.run(analyze_data(file, api_key, user_question, progress))
|
816 |
-
|
817 |
-
# Launch configuration
|
818 |
if __name__ == "__main__":
|
819 |
-
app.queue(max_size=10)
|
820 |
-
app.launch(
|
821 |
-
share=True
|
822 |
-
)
|
|
|
3 |
import aiohttp
|
4 |
import asyncio
|
5 |
import json
|
|
|
6 |
import os
|
7 |
import numpy as np
|
8 |
import plotly.express as px
|
|
|
11 |
import logging
|
12 |
from datetime import datetime
|
13 |
import re
|
14 |
+
from jinja2 import Template
|
15 |
+
import markdown # Requires 'markdown' package: install via `pip install markdown`
|
|
|
|
|
16 |
|
17 |
# Configure logging
|
18 |
logging.basicConfig(level=logging.INFO)
|
|
|
83 |
],
|
84 |
"stream": True,
|
85 |
"max_tokens": 3000,
|
86 |
+
"temperature": 0.2,
|
87 |
"top_p": 0.9
|
88 |
}
|
89 |
|
90 |
try:
|
91 |
+
timeout = aiohttp.ClientTimeout(total=30)
|
92 |
async with aiohttp.ClientSession(timeout=timeout) as session:
|
93 |
async with session.post(self.api_base_url, headers=headers, json=body) as response:
|
94 |
if response.status == 401:
|
|
|
128 |
try:
|
129 |
file_extension = os.path.splitext(file_path)[1].lower()
|
130 |
|
|
|
131 |
if file_extension == '.csv':
|
|
|
132 |
for encoding in ['utf-8', 'latin-1', 'cp1252']:
|
133 |
try:
|
134 |
df = pd.read_csv(file_path, encoding=encoding)
|
|
|
142 |
else:
|
143 |
raise ValueError("Unsupported file format. Please upload CSV or Excel files.")
|
144 |
|
|
|
145 |
df.columns = df.columns.str.strip().str.replace(r'\s+', ' ', regex=True)
|
|
|
|
|
146 |
self.current_df = df
|
|
|
|
|
147 |
data_summary = self.generate_enhanced_summary(df)
|
148 |
charts_html = self.generate_visualizations(df)
|
149 |
|
|
|
155 |
def generate_enhanced_summary(self, df: pd.DataFrame) -> str:
|
156 |
"""Generate comprehensive data summary with statistical insights"""
|
157 |
summary = []
|
|
|
|
|
158 |
summary.append(f"# π Dataset Analysis Report")
|
159 |
summary.append(f"**Generated**: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
160 |
summary.append(f"**File Size**: {df.shape[0]:,} rows Γ {df.shape[1]} columns")
|
|
|
|
|
161 |
memory_usage = df.memory_usage(deep=True).sum() / 1024**2
|
162 |
summary.append(f"**Memory Usage**: {memory_usage:.2f} MB\n")
|
163 |
|
|
|
164 |
type_counts = df.dtypes.value_counts()
|
165 |
summary.append("## π Column Types:")
|
166 |
for dtype, count in type_counts.items():
|
167 |
summary.append(f"- **{dtype}**: {count} columns")
|
168 |
|
|
|
169 |
missing_data = df.isnull().sum()
|
170 |
missing_pct = (missing_data / len(df) * 100).round(2)
|
171 |
missing_summary = missing_data[missing_data > 0].sort_values(ascending=False)
|
|
|
178 |
else:
|
179 |
summary.append("\n## β
Data Quality: No missing values detected!")
|
180 |
|
|
|
181 |
numeric_cols = df.select_dtypes(include=[np.number]).columns
|
182 |
if len(numeric_cols) > 0:
|
183 |
summary.append(f"\n## π Numerical Columns Analysis ({len(numeric_cols)} columns):")
|
184 |
+
for col in numeric_cols[:10]:
|
185 |
stats = df[col].describe()
|
186 |
outliers = len(df[df[col] > (stats['75%'] + 1.5 * (stats['75%'] - stats['25%']))])
|
187 |
summary.append(f"- **{col}**: ΞΌ={stats['mean']:.2f}, Ο={stats['std']:.2f}, outliers={outliers}")
|
188 |
|
|
|
189 |
categorical_cols = df.select_dtypes(include=['object', 'category']).columns
|
190 |
if len(categorical_cols) > 0:
|
191 |
summary.append(f"\n## π Categorical Columns Analysis ({len(categorical_cols)} columns):")
|
192 |
+
for col in categorical_cols[:10]:
|
193 |
unique_count = df[col].nunique()
|
194 |
cardinality = "High" if unique_count > len(df) * 0.9 else "Medium" if unique_count > 10 else "Low"
|
195 |
most_common = df[col].mode().iloc[0] if len(df[col].mode()) > 0 else "N/A"
|
196 |
summary.append(f"- **{col}**: {unique_count:,} unique values ({cardinality} cardinality), Top: '{most_common}'")
|
197 |
|
|
|
198 |
summary.append("\n## π Data Sample (First 3 Rows):")
|
199 |
sample_df = df.head(3)
|
200 |
for idx, row in sample_df.iterrows():
|
|
|
209 |
charts_html = []
|
210 |
|
211 |
try:
|
|
|
212 |
missing_data = df.isnull().sum()
|
213 |
if missing_data.sum() > 0:
|
214 |
fig = px.bar(
|
|
|
228 |
charts_html.append(f"<h3>π Data Quality Overview</h3>")
|
229 |
charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id="missing_data_chart"))
|
230 |
|
|
|
231 |
numeric_cols = df.select_dtypes(include=[np.number]).columns
|
232 |
if len(numeric_cols) > 1:
|
233 |
corr_matrix = df[numeric_cols].corr()
|
|
|
242 |
charts_html.append(f"<h3>π Correlation Analysis</h3>")
|
243 |
charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id="correlation_chart"))
|
244 |
|
|
|
245 |
if len(numeric_cols) > 0:
|
246 |
+
for i, col in enumerate(numeric_cols[:3]):
|
247 |
fig = px.histogram(
|
248 |
df,
|
249 |
x=col,
|
|
|
256 |
charts_html.append(f"<h3>π Data Distributions</h3>")
|
257 |
charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id=f"dist_chart_{i}"))
|
258 |
|
|
|
259 |
categorical_cols = df.select_dtypes(include=['object', 'category']).columns
|
260 |
if len(categorical_cols) > 0:
|
261 |
+
for i, col in enumerate(categorical_cols[:2]):
|
262 |
+
if df[col].nunique() <= 20:
|
263 |
value_counts = df[col].value_counts().head(10)
|
264 |
fig = px.bar(
|
265 |
x=value_counts.values,
|
|
|
273 |
charts_html.append(f"<h3>π Categorical Data Analysis</h3>")
|
274 |
charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id=f"cat_chart_{i}"))
|
275 |
|
|
|
276 |
summary_data = {
|
277 |
'Metric': ['Total Rows', 'Total Columns', 'Numeric Columns', 'Categorical Columns', 'Missing Values'],
|
278 |
'Count': [
|
|
|
296 |
charts_html.append(f"<h3>π Dataset Overview</h3>")
|
297 |
charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id="overview_chart"))
|
298 |
|
|
|
299 |
self.current_charts = charts_html
|
|
|
300 |
return "\n".join(charts_html) if charts_html else "<p>No charts could be generated for this dataset.</p>"
|
301 |
|
302 |
except Exception as e:
|
|
|
304 |
return f"<p>β Chart generation failed: {str(e)}</p>"
|
305 |
|
306 |
def generate_report_html(self, analysis_text: str, data_summary: str, file_name: str = "Unknown") -> str:
|
307 |
+
"""Generate HTML report with properly formatted text and print button"""
|
|
|
308 |
html_template = """
|
309 |
<!DOCTYPE html>
|
310 |
<html>
|
|
|
343 |
border-radius: 8px;
|
344 |
border-left: 4px solid #667eea;
|
345 |
}
|
346 |
+
h1, h2, h3 {
|
347 |
+
color: #2c3e50;
|
348 |
+
margin-top: 20px;
|
349 |
+
margin-bottom: 15px;
|
350 |
+
}
|
351 |
.metadata {
|
352 |
background: #e8f4f8;
|
353 |
padding: 15px;
|
|
|
368 |
border-radius: 5px;
|
369 |
overflow-x: auto;
|
370 |
white-space: pre-wrap;
|
371 |
+
font-size: 14px;
|
372 |
+
}
|
373 |
+
strong {
|
374 |
+
color: #2c3e50;
|
375 |
+
font-weight: 600;
|
376 |
+
}
|
377 |
+
table {
|
378 |
+
width: 100%;
|
379 |
+
border-collapse: collapse;
|
380 |
+
margin: 20px 0;
|
381 |
+
}
|
382 |
+
th, td {
|
383 |
+
border: 1px solid #ddd;
|
384 |
+
padding: 8px;
|
385 |
+
text-align: left;
|
386 |
+
}
|
387 |
+
th {
|
388 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
389 |
+
color: white;
|
390 |
+
}
|
391 |
+
tr:nth-child(even) {
|
392 |
+
background-color: #f2f2f2;
|
393 |
+
}
|
394 |
+
.print-button {
|
395 |
+
background: #667eea;
|
396 |
+
color: white;
|
397 |
+
padding: 10px 20px;
|
398 |
+
border: none;
|
399 |
+
border-radius: 5px;
|
400 |
+
cursor: pointer;
|
401 |
+
font-size: 16px;
|
402 |
+
margin: 10px 0;
|
403 |
+
display: inline-block;
|
404 |
+
}
|
405 |
+
.print-button:hover {
|
406 |
+
background: #764ba2;
|
407 |
+
}
|
408 |
+
@media print {
|
409 |
+
.print-button {
|
410 |
+
display: none;
|
411 |
+
}
|
412 |
+
body {
|
413 |
+
background: white;
|
414 |
+
}
|
415 |
+
.section, .metadata, .footer {
|
416 |
+
box-shadow: none;
|
417 |
+
}
|
418 |
}
|
419 |
</style>
|
420 |
+
<script>
|
421 |
+
function printReport() {
|
422 |
+
window.print();
|
423 |
+
}
|
424 |
+
</script>
|
425 |
</head>
|
426 |
<body>
|
427 |
<div class="header">
|
|
|
432 |
<div class="metadata">
|
433 |
<strong>π File:</strong> {{ file_name }}<br>
|
434 |
<strong>π
Generated:</strong> {{ timestamp }}<br>
|
435 |
+
<strong>π€ Model:</strong> OpenAI gpt-oss-20b
|
436 |
</div>
|
437 |
|
438 |
<div class="section">
|
439 |
<h2>π― AI Analysis & Insights</h2>
|
440 |
+
<button class="print-button" onclick="printReport()">π¨οΈ Print as PDF</button>
|
441 |
<div>{{ ai_analysis }}</div>
|
442 |
</div>
|
443 |
|
|
|
454 |
</div>
|
455 |
|
456 |
<div class="footer">
|
457 |
+
<p>Report generated by Smart Data Analyzer Pro β’ Powered by Smart AI</p>
|
458 |
+
<p>For questions or support, contact +8801719296601 (via Whatsapp)</p>
|
459 |
</div>
|
460 |
</body>
|
461 |
</html>
|
462 |
"""
|
463 |
|
464 |
template = Template(html_template)
|
465 |
+
ai_analysis_html = markdown.markdown(analysis_text, extensions=['extra', 'tables'])
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
charts_content = "\n".join(self.current_charts) if self.current_charts else "<p>No visualizations available</p>"
|
467 |
|
468 |
return template.render(
|
|
|
473 |
data_summary=data_summary
|
474 |
)
|
475 |
|
|
|
476 |
analyzer = EnhancedDataAnalyzer()
|
477 |
|
478 |
async def analyze_data(file, api_key, user_question="", progress=gr.Progress()):
|
|
|
479 |
if not file:
|
480 |
return "β Please upload a CSV or Excel file.", "", "", "", None
|
481 |
|
482 |
if not analyzer.validate_api_key(api_key):
|
483 |
return "β Please enter a valid Chutes API key (minimum 10 characters).", "", "", "", None
|
484 |
|
|
|
485 |
is_valid, validation_msg = analyzer.validate_file(file)
|
486 |
if not is_valid:
|
487 |
return f"β {validation_msg}", "", "", "", None
|
488 |
|
489 |
progress(0.1, desc="π Reading file...")
|
|
|
490 |
try:
|
|
|
491 |
df, data_summary, charts_html = analyzer.process_file(file.name)
|
492 |
progress(0.3, desc="π Processing data...")
|
|
|
493 |
progress(0.5, desc="π€ Generating AI insights...")
|
|
|
|
|
494 |
ai_analysis = await analyzer.analyze_with_chutes(api_key, data_summary, user_question)
|
495 |
progress(0.9, desc="β¨ Finalizing results...")
|
496 |
|
|
|
497 |
response = f"""# π― Analysis Complete!
|
498 |
{ai_analysis}
|
499 |
---
|
500 |
*Analysis powered by OpenAI gpt-oss-20b via Chutes β’ Generated at {datetime.now().strftime('%H:%M:%S')}*
|
501 |
"""
|
|
|
|
|
502 |
data_preview_html = df.head(15).to_html(
|
503 |
classes="table table-striped table-hover",
|
504 |
table_id="data-preview-table",
|
505 |
escape=False
|
506 |
)
|
|
|
|
|
507 |
styled_preview = f"""
|
508 |
<style>
|
509 |
#data-preview-table {{
|
|
|
538 |
return f"β **Error**: {str(e)}", "", "", "", None
|
539 |
|
540 |
def sync_analyze_data(file, api_key, user_question="", progress=gr.Progress()):
|
|
|
541 |
return asyncio.run(analyze_data(file, api_key, user_question, progress))
|
542 |
|
543 |
def clear_all():
|
|
|
544 |
analyzer.current_df = None
|
545 |
analyzer.current_charts = None
|
546 |
return None, "", "", "", "", "", "", None
|
547 |
|
548 |
def download_report(analysis_text, data_summary, file_name, format_choice):
|
|
|
549 |
if not analysis_text:
|
550 |
return None, "β No analysis data available for download."
|
551 |
|
|
|
554 |
|
555 |
try:
|
556 |
if format_choice == "HTML":
|
|
|
557 |
html_content = analyzer.generate_report_html(analysis_text, data_summary, file_name)
|
558 |
filename = f"{file_base_name}_analysis_report_{timestamp}.html"
|
|
|
559 |
with open(filename, 'w', encoding='utf-8') as f:
|
560 |
f.write(html_content)
|
|
|
561 |
return filename, f"β
HTML report generated successfully! File: {filename}"
|
562 |
|
563 |
+
else: # Markdown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
report = f"""# Data Analysis Report
|
565 |
Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
566 |
File: {file_name}
|
|
|
572 |
filename = f"{file_base_name}_analysis_report_{timestamp}.md"
|
573 |
with open(filename, 'w', encoding='utf-8') as f:
|
574 |
f.write(report)
|
|
|
575 |
return filename, f"β
Markdown report generated successfully! File: {filename}"
|
576 |
|
577 |
except Exception as e:
|
578 |
logger.error(f"Report generation error: {str(e)}")
|
579 |
return None, f"β Error generating report: {str(e)}"
|
580 |
|
|
|
581 |
with gr.Blocks(
|
582 |
title="π Smart Data Analyzer Pro",
|
583 |
theme=gr.themes.Ocean(),
|
|
|
595 |
text-align: center;
|
596 |
background: #f8f9ff;
|
597 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
"""
|
599 |
) as app:
|
|
|
|
|
600 |
current_file_name = gr.State("")
|
601 |
|
|
|
602 |
gr.Markdown("""
|
603 |
# π Smart Data Analyzer Pro
|
604 |
### AI-Powered Excel & CSV Analysis with OpenAI gpt-oss-20b
|
605 |
|
606 |
+
Upload your data files and get instant professional insights and downloadable reports!
|
607 |
""")
|
608 |
|
|
|
609 |
with gr.Row():
|
610 |
with gr.Column(scale=1):
|
|
|
611 |
gr.Markdown("### βοΈ Configuration")
|
|
|
612 |
api_key_input = gr.Textbox(
|
613 |
label="π Chutes API Key",
|
614 |
placeholder="sk-chutes-your-api-key-here...",
|
|
|
616 |
lines=1,
|
617 |
info="Get your free API key from chutes.ai"
|
618 |
)
|
|
|
619 |
file_input = gr.File(
|
620 |
label="π Upload Data File",
|
621 |
file_types=[".csv", ".xlsx", ".xls"],
|
622 |
file_count="single",
|
623 |
elem_classes=["upload-area"]
|
624 |
)
|
|
|
625 |
with gr.Row():
|
626 |
analyze_btn = gr.Button("π Analyze Data", variant="primary", size="lg")
|
627 |
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
|
|
|
|
|
628 |
with gr.Group():
|
629 |
gr.Markdown("### π Quick Stats")
|
630 |
file_stats = gr.Textbox(
|
|
|
635 |
)
|
636 |
|
637 |
with gr.Column(scale=2):
|
|
|
638 |
gr.Markdown("### π― Analysis Results")
|
|
|
639 |
analysis_output = gr.Markdown(
|
640 |
value="π **Ready to analyze your data!**\n\nUpload a CSV or Excel file and click 'Analyze Data' to get started.",
|
641 |
show_label=False
|
642 |
)
|
643 |
|
|
|
644 |
with gr.Tabs():
|
645 |
with gr.Tab("π¬ Ask Questions"):
|
646 |
question_input = gr.Textbox(
|
|
|
657 |
value="<p>Upload a file to see data preview...</p>"
|
658 |
)
|
659 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
660 |
with gr.Tab("π Raw Summary"):
|
661 |
raw_summary = gr.Textbox(
|
662 |
label="Detailed Data Summary",
|
|
|
667 |
|
668 |
with gr.Tab("πΎ Export Reports"):
|
669 |
gr.Markdown("### π₯ Download Your Analysis Report")
|
|
|
670 |
with gr.Row():
|
671 |
format_choice = gr.Radio(
|
672 |
+
choices=["HTML", "Markdown"],
|
673 |
value="HTML",
|
674 |
label="π Report Format",
|
675 |
info="Choose your preferred download format"
|
676 |
)
|
|
|
677 |
download_btn = gr.Button("π₯ Generate & Download Report", variant="primary", size="lg")
|
678 |
download_status = gr.Textbox(label="Download Status", interactive=False)
|
679 |
download_file = gr.File(label="π Download Link", visible=True)
|
680 |
|
|
|
681 |
def update_file_stats(file):
|
682 |
if not file:
|
683 |
return "No file uploaded"
|
|
|
684 |
try:
|
685 |
+
file_size = os.path.getsize(file.name) / (1024 * 1024)
|
686 |
file_name = os.path.basename(file.name)
|
687 |
return f"π **File**: {file_name}\nπ **Size**: {file_size:.2f} MB\nβ° **Uploaded**: {datetime.now().strftime('%H:%M:%S')}"
|
688 |
except:
|
689 |
return "File information unavailable"
|
690 |
|
691 |
def handle_analysis(file, api_key, user_question="", progress=gr.Progress()):
|
|
|
692 |
result = sync_analyze_data(file, api_key, user_question, progress)
|
693 |
+
if len(result) == 5:
|
694 |
+
return result[0], result[1], result[2], result[4]
|
695 |
else:
|
696 |
+
return result[0], result[1], result[2], ""
|
697 |
|
698 |
def handle_question_analysis(file, api_key, question, progress=gr.Progress()):
|
|
|
699 |
if not question.strip():
|
700 |
return "β Please enter a specific question about your data."
|
|
|
701 |
result = sync_analyze_data(file, api_key, question, progress)
|
702 |
+
return result[0]
|
703 |
|
|
|
704 |
analyze_btn.click(
|
705 |
fn=handle_analysis,
|
706 |
inputs=[file_input, api_key_input, gr.Textbox(value="", visible=False)],
|
707 |
+
outputs=[analysis_output, raw_summary, data_preview, current_file_name],
|
708 |
show_progress=True
|
709 |
)
|
710 |
|
|
|
711 |
ask_btn.click(
|
712 |
fn=handle_question_analysis,
|
713 |
inputs=[file_input, api_key_input, question_input],
|
|
|
715 |
show_progress=True
|
716 |
)
|
717 |
|
|
|
718 |
file_input.change(
|
719 |
fn=update_file_stats,
|
720 |
inputs=[file_input],
|
721 |
outputs=[file_stats]
|
722 |
)
|
723 |
|
|
|
724 |
clear_btn.click(
|
725 |
fn=clear_all,
|
726 |
outputs=[file_input, api_key_input, question_input, analysis_output,
|
727 |
+
question_output, data_preview, raw_summary, current_file_name]
|
728 |
)
|
729 |
|
|
|
730 |
download_btn.click(
|
731 |
fn=download_report,
|
732 |
inputs=[analysis_output, raw_summary, current_file_name, format_choice],
|
733 |
outputs=[download_file, download_status]
|
734 |
)
|
735 |
|
|
|
736 |
gr.Markdown("""
|
737 |
---
|
738 |
### π‘ Pro Tips for Better Analysis:
|
|
|
742 |
- Use descriptive column names
|
743 |
- Ask specific questions like "What drives the highest profits?" instead of "Analyze this data"
|
744 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
745 |
**π₯ Export Options:**
|
746 |
+
- **HTML**: Interactive report with embedded charts and print-to-PDF option
|
|
|
747 |
- **Markdown**: Simple text format for documentation
|
748 |
|
749 |
**β‘ Speed Optimization:**
|
|
|
754 |
**π§ Supported Formats:** CSV, XLSX, XLS | **π Max Size:** 50MB | **π Response Time:** ~3-5 seconds
|
755 |
""")
|
756 |
|
|
|
|
|
|
|
|
|
|
|
757 |
if __name__ == "__main__":
|
758 |
+
app.queue(max_size=10)
|
759 |
+
app.launch()
|
|
|
|