Spaces:
Paused
Paused
| import streamlit as st | |
| import os | |
| import textwrap | |
| from helpers import text_to_speech, autoplay_audio, speech_to_text, get_api_key | |
| from generate_answer import base_model_chatbot, with_pdf_chatbot | |
| from audio_recorder_streamlit import audio_recorder | |
| from streamlit_float import * | |
| def main(answer_mode: str): | |
| # Float feature initialization | |
| float_init() | |
| # Prompt for API key | |
| api_key = get_api_key() | |
| if not api_key: | |
| st.error("You must provide a valid OpenAI API Key to proceed.") | |
| st.stop() | |
| def initialize_session_state(): | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [ | |
| {"role": "assistant", "content": "Hi! How may I assist you today?"} | |
| ] | |
| initialize_session_state() | |
| st.title("OpenAI Conversational Chatbot 🤖") | |
| # Create footer container for the microphone | |
| footer_container = st.container() | |
| with footer_container: | |
| audio_bytes = audio_recorder() | |
| # Display previous messages | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.write(message["content"]) | |
| if audio_bytes: | |
| # Write the audio bytes to a file | |
| with st.spinner("Transcribing..."): | |
| webm_file_path = "temp_audio.mp3" | |
| with open(webm_file_path, "wb") as f: | |
| f.write(audio_bytes) | |
| transcript = speech_to_text(webm_file_path) | |
| if transcript: | |
| st.session_state.messages.append({"role": "user", "content": transcript}) | |
| with st.chat_message("user"): | |
| st.write(transcript) | |
| os.remove(webm_file_path) | |
| if st.session_state.messages[-1]["role"] != "assistant": | |
| with st.chat_message("assistant"): | |
| with st.spinner("Thinking🤔..."): | |
| if answer_mode == 'base_model': | |
| final_response = base_model_chatbot(st.session_state.messages) | |
| elif answer_mode == 'pdf_chat': | |
| final_response = with_pdf_chatbot(st.session_state.messages) | |
| # Display response in chunks if it's too long | |
| with st.spinner("Generating audio response..."): | |
| audio_files = text_to_speech(final_response) | |
| autoplay_audio(audio_files) | |
| # Use the display_text_in_chunks function to avoid truncation | |
| display_text_in_chunks(final_response) | |
| st.session_state.messages.append({"role": "assistant", "content": final_response}) | |
| for audio_file in audio_files: | |
| os.remove(audio_file) | |
| # Float the footer container and provide CSS to target it with | |
| footer_container.float("bottom: 0rem;") | |
| def display_text_in_chunks(text, chunk_size=500): | |
| """Display long text in manageable chunks.""" | |
| chunks = textwrap.wrap(text, chunk_size) | |
| for chunk in chunks: | |
| st.write(chunk) | |
| if __name__ == "__main__": | |
| main(answer_mode='base_model') # Or: answer_mode='pdf_chat' | |