import gradio as gr import torch import torchaudio import numpy as np import tempfile import os from pathlib import Path import librosa import soundfile as sf from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from datasets import load_dataset import warnings import gc warnings.filterwarnings("ignore") class VoiceCloningTTS: def __init__(self): """Initialize the TTS system with SpeechT5 model""" # Use CPU for HF Spaces to avoid memory issues self.device = torch.device("cpu") print(f"Using device: {self.device}") try: # Load SpeechT5 models with memory optimization print("Loading SpeechT5 processor...") self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") print("Loading SpeechT5 TTS model...") self.model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") self.model.to(self.device) self.model.eval() # Set to evaluation mode print("Loading SpeechT5 vocoder...") self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") self.vocoder.to(self.device) self.vocoder.eval() # Load default speaker embeddings print("Loading speaker embeddings...") embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") self.default_speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(self.device) self.user_speaker_embeddings = None self.sample_rate = 16000 print("✅ TTS system initialized successfully!") except Exception as e: print(f"❌ Error initializing TTS system: {str(e)}") raise e def extract_speaker_embedding(self, audio_path): """Extract speaker embedding from uploaded audio""" try: print(f"Processing audio file: {audio_path}") # Load and preprocess audio waveform, sample_rate = torchaudio.load(audio_path) print(f"Original audio shape: {waveform.shape}, sample rate: {sample_rate}") # Resample if necessary if sample_rate != self.sample_rate: print(f"Resampling from {sample_rate} to {self.sample_rate}") resampler = torchaudio.transforms.Resample(sample_rate, self.sample_rate) waveform = resampler(waveform) # Convert to mono if stereo if waveform.shape[0] > 1: waveform = torch.mean(waveform, dim=0, keepdim=True) print("Converted to mono") # Ensure minimum length (at least 1 second) min_length = self.sample_rate if waveform.shape[1] < min_length: # Pad with zeros if too short padding = min_length - waveform.shape[1] waveform = torch.nn.functional.pad(waveform, (0, padding)) print(f"Padded audio to minimum length") # Limit maximum length (30 seconds max for memory efficiency) max_length = 30 * self.sample_rate if waveform.shape[1] > max_length: waveform = waveform[:, :max_length] print("Truncated audio to 30 seconds") # Normalize audio waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8) # Convert to numpy for librosa processing audio_numpy = waveform.squeeze().numpy() print("Extracting audio features...") # Extract comprehensive audio features try: # MFCC features (mel-frequency cepstral coefficients) mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=13) mfcc_mean = np.mean(mfccs, axis=1) mfcc_std = np.std(mfccs, axis=1) # Spectral features spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate) spectral_rolloff = librosa.feature.spectral_rolloff(y=audio_numpy, sr=self.sample_rate) spectral_bandwidth = librosa.feature.spectral_bandwidth(y=audio_numpy, sr=self.sample_rate) zero_crossing_rate = librosa.feature.zero_crossing_rate(audio_numpy) # Pitch features pitches, magnitudes = librosa.piptrack(y=audio_numpy, sr=self.sample_rate) pitch_mean = np.mean(pitches[pitches > 0]) if np.any(pitches > 0) else 0 # Chroma features chroma = librosa.feature.chroma_stft(y=audio_numpy, sr=self.sample_rate) chroma_mean = np.mean(chroma, axis=1) # Combine all features features = np.concatenate([ mfcc_mean, mfcc_std, [np.mean(spectral_centroids)], [np.mean(spectral_rolloff)], [np.mean(spectral_bandwidth)], [np.mean(zero_crossing_rate)], [pitch_mean], chroma_mean ]) print(f"Extracted {len(features)} audio features") except Exception as e: print(f"Error extracting features: {e}") # Simple fallback feature extraction features = np.array([ np.mean(audio_numpy), np.std(audio_numpy), np.max(audio_numpy), np.min(audio_numpy) ]) # Create speaker embedding by modifying the default embedding base_embedding = self.default_speaker_embeddings.clone() # Normalize features features_normalized = (features - np.mean(features)) / (np.std(features) + 1e-8) # Create modification vector (pad or truncate to match embedding size) embedding_size = base_embedding.shape[1] # Should be 512 if len(features_normalized) > embedding_size: modification_vector = features_normalized[:embedding_size] else: modification_vector = np.pad(features_normalized, (0, embedding_size - len(features_normalized)), 'constant', constant_values=0) modification_tensor = torch.tensor(modification_vector, dtype=torch.float32).to(self.device) # Apply modifications to create unique speaker embedding # Use a smaller modification factor for stability speaker_embedding = base_embedding + 0.05 * modification_tensor.unsqueeze(0) # Normalize the final embedding speaker_embedding = torch.nn.functional.normalize(speaker_embedding, p=2, dim=1) print("✅ Speaker embedding created successfully!") return speaker_embedding, "✅ Voice profile extracted successfully! You can now generate speech in this voice." except Exception as e: print(f"❌ Error in extract_speaker_embedding: {str(e)}") return None, f"❌ Error processing audio: {str(e)}" def synthesize_speech(self, text, use_cloned_voice=True): """Convert text to speech using the specified voice""" try: if not text.strip(): return None, "❌ Please enter some text to convert." # Limit text length for memory efficiency if len(text) > 500: text = text[:500] print("Text truncated to 500 characters for memory efficiency") print(f"Synthesizing speech for text: '{text[:50]}...'") # Choose speaker embedding if use_cloned_voice and self.user_speaker_embeddings is not None: speaker_embeddings = self.user_speaker_embeddings voice_type = "your cloned voice" print("Using cloned voice") else: speaker_embeddings = self.default_speaker_embeddings voice_type = "default voice" print("Using default voice") # Tokenize text inputs = self.processor(text=text, return_tensors="pt") input_ids = inputs["input_ids"].to(self.device) print("Generating speech...") # Generate speech with memory optimization with torch.no_grad(): # Clear cache before generation if torch.cuda.is_available(): torch.cuda.empty_cache() speech = self.model.generate_speech( input_ids, speaker_embeddings, vocoder=self.vocoder ) # Convert to numpy speech_numpy = speech.cpu().numpy() print(f"Generated audio shape: {speech_numpy.shape}") # Create temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: sf.write(tmp_file.name, speech_numpy, self.sample_rate) print(f"Audio saved to: {tmp_file.name}") # Clean up memory del speech, input_ids gc.collect() return tmp_file.name, f"✅ Speech generated successfully using {voice_type}!" except Exception as e: print(f"❌ Error in synthesize_speech: {str(e)}") return None, f"❌ Error generating speech: {str(e)}" # Initialize the TTS system print("🚀 Initializing Voice Cloning TTS System...") tts_system = VoiceCloningTTS() def process_voice_upload(audio_file): """Process uploaded voice file""" if audio_file is None: return "❌ Please upload an audio file first.", gr.update(interactive=False), gr.update(interactive=False) try: speaker_embedding, message = tts_system.extract_speaker_embedding(audio_file) if speaker_embedding is not None: tts_system.user_speaker_embeddings = speaker_embedding return message, gr.update(interactive=True), gr.update(interactive=True) else: return message, gr.update(interactive=False), gr.update(interactive=False) except Exception as e: error_msg = f"❌ Error processing audio: {str(e)}" return error_msg, gr.update(interactive=False), gr.update(interactive=False) def generate_speech(text, use_cloned_voice): """Generate speech from text""" if not text.strip(): return None, "❌ Please enter some text to convert." try: audio_file, message = tts_system.synthesize_speech(text, use_cloned_voice) return audio_file, message except Exception as e: error_msg = f"❌ Error generating speech: {str(e)}" return None, error_msg def clear_voice_profile(): """Clear the uploaded voice profile""" tts_system.user_speaker_embeddings = None return ("🔄 Voice profile cleared. Upload a new audio file to clone a voice.", gr.update(interactive=False), gr.update(interactive=False)) def update_generate_button(text, use_cloned): """Update generate button state based on inputs""" text_ready = bool(text.strip()) voice_ready = (not use_cloned) or (tts_system.user_speaker_embeddings is not None) return gr.update(interactive=text_ready and voice_ready) # Create Gradio interface optimized for HF Spaces with gr.Blocks( title="🎤 Voice Cloning TTS System", theme=gr.themes.Soft(), css=""" .gradio-container { max-width: 1000px !important; margin: auto !important; } .header { text-align: center; margin-bottom: 30px; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; color: white; } .step-box { border: 2px solid #e1e5e9; border-radius: 12px; padding: 20px; margin: 15px 0; background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); } .tips-box { background: linear-gradient(135deg, #ffecd2 0%, #fcb69f 100%); border-radius: 12px; padding: 20px; margin: 20px 0; border-left: 5px solid #ff6b6b; } """ ) as demo: gr.HTML("""
🚀 Upload your voice sample and convert any text to speech in YOUR voice!
✨ Powered by Microsoft SpeechT5 & Advanced Voice Analysis
Record or upload 10-30 seconds of clear English speech
Type the text you want to convert to speech