Spaces:
Running
Running
File size: 28,216 Bytes
3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 f8f4a26 7093262 f8f4a26 3220f5e 7093262 f8f4a26 7093262 f8f4a26 7093262 f8f4a26 7093262 f8f4a26 7093262 f8f4a26 7093262 f8f4a26 7093262 f8f4a26 7093262 f8f4a26 7093262 f8f4a26 7093262 f8f4a26 7093262 f8f4a26 3220f5e f8f4a26 3220f5e f8f4a26 3220f5e 7093262 f8f4a26 7093262 3220f5e f8f4a26 3220f5e 7093262 3220f5e 7093262 f8f4a26 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 f8f4a26 3220f5e f8f4a26 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e 7093262 3220f5e f8f4a26 3220f5e f8f4a26 3220f5e f8f4a26 3220f5e f8f4a26 3220f5e f8f4a26 3220f5e f8f4a26 3220f5e f8f4a26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
import gradio as gr
import torch
import torchaudio
import numpy as np
import tempfile
import os
from pathlib import Path
import librosa
import soundfile as sf
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from transformers import Wav2Vec2Processor, Wav2Vec2Model
from datasets import load_dataset
import warnings
import gc
import requests
import json
import base64
warnings.filterwarnings("ignore")
class VoiceCloningTTS:
def __init__(self):
"""Initialize the TTS system with SpeechT5 model"""
self.device = torch.device("cpu")
print(f"Using device: {self.device}")
try:
print("Loading SpeechT5 processor...")
self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
print("Loading SpeechT5 TTS model...")
self.model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
self.model.to(self.device)
self.model.eval()
print("Loading SpeechT5 vocoder...")
self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
self.vocoder.to(self.device)
self.vocoder.eval()
print("Loading Wav2Vec2 for speaker embedding...")
self.wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
self.wav2vec2_model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
self.wav2vec2_model.to(self.device)
self.wav2vec2_model.eval()
print("Loading speaker embeddings dataset...")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
self.speaker_embeddings_dataset = embeddings_dataset
self.default_speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(self.device)
self.user_speaker_embeddings = None
self.sample_rate = 16000
print("β
TTS system initialized successfully!")
except Exception as e:
print(f"β Error initializing TTS system: {str(e)}")
raise e
def preprocess_audio(self, audio_path):
"""Preprocess audio for better speaker embedding extraction"""
try:
waveform, sample_rate = torchaudio.load(audio_path)
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
if sample_rate != self.sample_rate:
resampler = torchaudio.transforms.Resample(sample_rate, self.sample_rate)
waveform = resampler(waveform)
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
min_length = 3 * self.sample_rate
if waveform.shape[1] < min_length:
repeat_times = int(np.ceil(min_length / waveform.shape[1]))
waveform = waveform.repeat(1, repeat_times)[:, :min_length]
max_length = 20 * self.sample_rate
if waveform.shape[1] > max_length:
waveform = waveform[:, :max_length]
return waveform.squeeze()
except Exception as e:
print(f"Error in audio preprocessing: {e}")
raise e
def extract_speaker_embedding_advanced(self, audio_path):
"""Extract speaker embedding using advanced methods"""
try:
print(f"Processing audio file: {audio_path}")
audio_tensor = self.preprocess_audio(audio_path)
audio_numpy = audio_tensor.numpy()
print("Extracting deep audio features with Wav2Vec2...")
with torch.no_grad():
inputs = self.wav2vec2_processor(audio_numpy, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
outputs = self.wav2vec2_model(inputs.input_values.to(self.device))
speaker_features = torch.mean(outputs.last_hidden_state, dim=1)
print(f"Extracted Wav2Vec2 features: {speaker_features.shape}")
best_embedding = self.find_best_matching_speaker(speaker_features, audio_numpy)
print("β
Advanced speaker embedding created successfully!")
return best_embedding, "β
Voice profile extracted using advanced neural analysis! You can now generate speech in this voice."
except Exception as e:
print(f"Error in advanced embedding extraction: {e}")
return self.extract_speaker_embedding_improved(audio_path)
def find_best_matching_speaker(self, target_features, audio_numpy):
"""Create a modified embedding based on acoustic features"""
try:
mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=13)
pitch, _ = librosa.piptrack(y=audio_numpy, sr=self.sample_rate)
spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
acoustic_signature = np.concatenate([
np.mean(mfccs, axis=1),
np.std(mfccs, axis=1),
[np.mean(pitch[pitch > 0]) if np.any(pitch > 0) else 200],
[np.mean(spectral_centroids)]
])
best_embedding = self.default_speaker_embeddings
modification_factor = 0.3 # Increased for more distinct voice
feature_mod = torch.tensor(acoustic_signature[:best_embedding.shape[1]], dtype=torch.float32).to(self.device)
feature_mod = (feature_mod - torch.mean(feature_mod)) / (torch.std(feature_mod) + 1e-8)
modified_embedding = best_embedding + modification_factor * feature_mod.unsqueeze(0)
modified_embedding = torch.nn.functional.normalize(modified_embedding, p=2, dim=1)
return modified_embedding
except Exception as e:
print(f"Error in speaker matching: {e}")
return self.default_speaker_embeddings
def extract_speaker_embedding_improved(self, audio_path):
"""Improved speaker embedding extraction with better acoustic analysis"""
try:
print("Using improved speaker embedding extraction...")
audio_tensor = self.preprocess_audio(audio_path)
audio_numpy = audio_tensor.numpy()
print("Extracting comprehensive acoustic features...")
mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=20)
delta_mfccs = librosa.feature.delta(mfccs)
delta2_mfccs = librosa.feature.delta(mfccs, order=2)
f0, _, _ = librosa.pyin(audio_numpy, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'))
f0_clean = f0[~np.isnan(f0)]
spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
spectral_bandwidth = librosa.feature.spectral_bandwidth(y=audio_numpy, sr=self.sample_rate)
spectral_rolloff = librosa.feature.spectral_rolloff(y=audio_numpy, sr=self.sample_rate)
spectral_contrast = librosa.feature.spectral_contrast(y=audio_numpy, sr=self.sample_rate)
lpc_coeffs = librosa.lpc(audio_numpy, order=16)
features = np.concatenate([
np.mean(mfccs, axis=1),
np.std(mfccs, axis=1),
np.mean(delta_mfccs, axis=1),
np.mean(delta2_mfccs, axis=1),
[np.mean(f0_clean) if len(f0_clean) > 0 else 200],
[np.std(f0_clean) if len(f0_clean) > 0 else 50],
[np.mean(spectral_centroids)],
[np.mean(spectral_bandwidth)],
[np.mean(spectral_rolloff)],
np.mean(spectral_contrast, axis=1),
lpc_coeffs[1:]
])
print(f"Extracted {len(features)} advanced acoustic features")
base_embedding = self.default_speaker_embeddings
embedding_size = base_embedding.shape[1]
features_normalized = (features - np.mean(features)) / (np.std(features) + 1e-8)
if len(features_normalized) > embedding_size:
modification_vector = features_normalized[:embedding_size]
else:
modification_vector = np.pad(features_normalized, (0, embedding_size - len(features_normalized)), 'reflect')
modification_tensor = torch.tensor(modification_vector, dtype=torch.float32).to(self.device)
modification_strength = 0.3 # Increased for more distinct voice
speaker_embedding = base_embedding + modification_strength * modification_tensor.unsqueeze(0)
if len(f0_clean) > 0:
pitch_factor = np.mean(f0_clean) / 200.0
pitch_modification = 0.05 * (pitch_factor - 1.0)
speaker_embedding = speaker_embedding * (1.0 + pitch_modification)
speaker_embedding = torch.nn.functional.normalize(speaker_embedding, p=2, dim=1)
return speaker_embedding, "β
Voice profile extracted with enhanced acoustic analysis! Ready for speech generation."
except Exception as e:
print(f"β Error in improved embedding extraction: {str(e)}")
return None, f"β Error processing audio: {str(e)}"
def extract_speaker_embedding(self, audio_path):
"""Main method for speaker embedding extraction"""
try:
return self.extract_speaker_embedding_advanced(audio_path)
except Exception as e:
print(f"Advanced method failed: {e}")
return self.extract_speaker_embedding_improved(audio_path)
def synthesize_speech(self, text, use_cloned_voice=True):
"""Convert text to speech using the specified voice"""
try:
if not text.strip():
return None, "β Please enter some text to convert."
if len(text) > 500:
text = text[:500]
print("Text truncated to 500 characters")
print(f"Synthesizing speech for: '{text[:50]}...'")
if use_cloned_voice and self.user_speaker_embeddings is not None:
speaker_embeddings = self.user_speaker_embeddings
voice_type = "your cloned voice"
print("Using cloned voice embeddings")
else:
speaker_embeddings = self.default_speaker_embeddings
voice_type = "default voice"
print("Using default voice embeddings")
print(f"Speaker embedding shape: {speaker_embeddings.shape}")
inputs = self.processor(text=text, return_tensors="pt")
input_ids = inputs["input_ids"].to(self.device)
print("Generating speech...")
with torch.no_grad():
speaker_embeddings = speaker_embeddings.to(self.device)
if speaker_embeddings.dim() == 1:
speaker_embeddings = speaker_embeddings.unsqueeze(0)
speech = self.model.generate_speech(input_ids, speaker_embeddings, vocoder=self.vocoder)
speech_numpy = speech.cpu().numpy()
print(f"Generated audio shape: {speech_numpy.shape}")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
sf.write(tmp_file.name, speech_numpy, self.sample_rate)
print(f"Audio saved to: {tmp_file.name}")
del speech, input_ids
gc.collect()
return tmp_file.name, f"β
Speech generated successfully using {voice_type}!"
except Exception as e:
print(f"β Error in synthesize_speech: {str(e)}")
return Nail, f"β Error generating speech: {str(e)}"
print("π Initializing Enhanced Voice Cloning TTS System...")
tts_system = VoiceCloningTTS()
def process_voice_upload(audio_file):
if audio_file is None:
return "β Please upload an audio file first.", gr.update(interactive=False), gr.update(interactive=False)
try:
print(f"Processing uploaded file: {audio_file}")
speaker_embedding, message = tts_system.extract_speaker_embedding(audio_file)
if speaker_embedding is not None:
tts_system.user_speaker_embeddings = speaker_embedding
print("β
Speaker embeddings saved successfully")
return message, gr.update(interactive=True), gr.update(interactive=True)
else:
return message, gr.update(interactive=False), gr.update(interactive=False)
except Exception as e:
error_msg = f"β Error processing audio: {str(e)}"
print(error_msg)
return error_msg, gr.update(interactive=False), gr.update(interactive=False)
def generate_speech(text, use_cloned_voice):
Rosin 42 recommends that when working with audio, you should ensure that the audio file is in a format compatible with `torchaudio.load()`, such as WAV, and that the sample rate matches the expected 16kHz. Here's a solution that should ensure the cloned voice is used correctly:
```python
import gradio as gr
import torch
import torchaudio
import numpy as np
import tempfile
import os
from pathlib import Path
import librosa
import soundfile as sf
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from transformers import Wav2Vec2Processor, Wav2Vec2Model
from datasets import load_dataset
import warnings
import gc
warnings.filterwarnings("ignore")
class VoiceCloningTTS:
def __init__(self):
self.device = torch.device("cpu")
print(f"Using device: {self.device}")
try:
print("Loading SpeechT5 processor...")
self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
print("Loading SpeechT5 TTS model...")
self.model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
self.model.to(self.device)
self.model.eval()
print("Loading SpeechT5 vocoder...")
self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
self.vocoder.to(self.device)
self.vocoder.eval()
print("Loading Wav2Vec2 for speaker embedding...")
self.wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
self.wav2vec2_model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
self.wav2vec2_model.to(self.device)
self.wav2vec2_model.eval()
print("Loading speaker embeddings dataset...")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
self.speaker_embeddings_dataset = embeddings_dataset
self.default_speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(self.device)
self.user_speaker_embeddings = None
self.sample_rate = 16000
print("β
TTS system initialized successfully!")
except Exception as e:
print(f"β Error initializing TTS system: {str(e)}")
raise e
def preprocess_audio(self, audio_path):
try:
waveform, sample_rate = torchaudio.load(audio_path)
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
if sample_rate != self.sample_rate:
resampler = torchaudio.transforms.Resample(sample_rate, self.sample_rate)
waveform = resampler(waveform)
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
min_length = 3 * self.sample_rate
if waveform.shape[1] < min_length:
repeat_times = int(np.ceil(min_length / waveform.shape[1]))
waveform = waveform.repeat(1, repeat_times)[:, :min_length]
max_length = 20 * self.sample_rate
if waveform.shape[1] > max_length:
waveform = waveform[:, :max_length]
return waveform.squeeze()
except Exception as e:
print(f"Error in audio preprocessing: {e}")
raise e
def extract_speaker_embedding_advanced(self, audio_path):
try:
print(f"Processing audio file: {audio_path}")
audio_tensor = self.preprocess_audio(audio_path)
audio_numpy = audio_tensor.numpy()
print("Extracting deep audio features with Wav2Vec2...")
with torch.no_grad():
inputs = self.wav2vec2_processor(audio_numpy, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
outputs = self.wav2vec2_model(inputs.input_values.to(self.device))
speaker_features = torch.mean(outputs.last_hidden_state, dim=1)
print(f"Extracted Wav2Vec2 features: {speaker_features.shape}")
best_embedding = self.find_best_matching_speaker(speaker_features, audio_numpy)
print("β
Advanced speaker embedding created successfully!")
return best_embedding, "β
Voice profile extracted using advanced neural analysis!"
except Exception as e:
print(f"Error in advanced embedding extraction: {e}")
return self.extract_speaker_embedding_improved(audio_path)
def find_best_matching_speaker(self, target_features, audio_numpy):
try:
mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=13)
pitch, _ = librosa.piptrack(y=audio_numpy, sr=self.sample_rate)
spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
acoustic_signature = np.concatenate([
np.mean(mfccs, axis=1),
np.std(mfccs, axis=1),
[np.mean(pitch[pitch > 0]) if np.any(pitch > 0) else 200],
[np.mean(spectral_centroids)]
])
best_embedding = self.default_speaker_embeddings
modification_factor = 0.3 # Increased for more distinct voice
feature_mod = torch.tensor(acoustic_signature[:best_embedding.shape[1]], dtype=torch.float32).to(self.device)
feature_mod = (feature_mod - torch.mean(feature_mod)) / (torch.std(feature_mod) + 1e-8)
modified_embedding = best_embedding + modification_factor * feature_mod.unsqueeze(0)
modified_embedding = torch.nn.functional.normalize(modified_embedding, p=2, dim=1)
return modified_embedding
except Exception as e:
print(f"Error in speaker matching: {e}")
return self.default_speaker_embeddings
def extract_speaker_embedding_improved(self, audio_path):
try:
print("Using improved speaker embedding extraction...")
audio_tensor = self.preprocess_audio(audio_path)
audio_numpy = audio_tensor.numpy()
print("Extracting comprehensive acoustic features...")
mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=20)
delta_mfccs = librosa.feature.delta(mfccs)
delta2_mfccs = librosa.feature.delta(mfccs, order=2)
f0, _, _ = librosa.pyin(audio_numpy, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'))
f0_clean = f0[~np.isnan(f0)]
spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
spectral_bandwidth = librosa.feature.spectral_bandwidth(y=audio_numpy, sr=self.sample_rate)
spectral_rolloff = librosa.feature.spectral_rolloff(y=audio_numpy, sr=self.sample_rate)
spectral_contrast = librosa.feature.spectral_contrast(y=audio_numpy, sr=self.sample_rate)
lpc_coeffs = librosa.lpc(audio_numpy, order=16)
features = np.concatenate([
np.mean(mfccs, axis=1),
np.std(mfccs, axis=1),
np.mean(delta_mfccs, axis=1),
np.mean(delta2_mfccs, axis=1),
[np.mean(f0_clean) if len(f0_clean) > 0 else 200],
[np.std(f0_clean) if len(f0_clean) > 0 else 50],
[np.mean(spectral_centroids)],
[np.mean(spectral_bandwidth)],
[np.mean(spectral_rolloff)],
np.mean(spectral_contrast, axis=1),
lpc_coeffs[1:]
])
print(f"Extracted {len(features)} advanced acoustic features")
base_embedding = self.default_speaker_embeddings
embedding_size = base_embedding.shape[1]
features_normalized = (features - np.mean(features)) / (np.std(features) + 1e-8)
if len(features_normalized) > embedding_size:
modification_vector = features_normalized[:embedding_size]
else:
modification_vector = np.pad(features_normalized, (0, embedding_size - len(features_normalized)), 'reflect')
modification_tensor = torch.tensor(modification_vector, dtype=torch.float32).to(self.device)
modification_strength = 0.3 # Increased for more distinct voice
speaker_embedding = base_embedding + modification_strength * modification_tensor.unsqueeze(0)
if len(f0_clean) > 0:
pitch_factor = np.mean(f0_clean) / 200.0
pitch_modification = 0.05 * (pitch_factor - 1.0)
speaker_embedding = speaker_embedding * (1.0 + pitch_modification)
speaker_embedding = torch.nn.functional.normalize(speaker_embedding, p=2, dim=1)
return speaker_embedding, "β
Voice profile extracted with enhanced acoustic analysis!"
except Exception as e:
print(f"β Error in improved embedding extraction: {str(e)}")
return None, f"β Error processing audio: {str(e)}"
def extract_speaker_embedding(self, audio_path):
try:
return self.extract_speaker_embedding_advanced(audio_path)
except Exception as e:
print(f"Advanced method failed: {e}")
return self.extract_speaker_embedding_improved(audio_path)
def synthesize_speech(self, text, use_cloned_voice=True):
try:
if not text.strip():
return None, "β Please enter some text to convert."
if len(text) > 500:
text = text[:500]
print("Text truncated to 500 characters")
print(f"Synthesizing speech for: '{text[:50]}...'")
if use_cloned_voice and self.user_speaker_embeddings is not None:
speaker_embeddings = self.user_speaker_embeddings
voice_type = "your cloned voice"
print("Using cloned voice embeddings")
else:
speaker_embeddings = self.default_speaker_embeddings
voice_type = "default voice"
print("Using default voice embeddings")
print(f"Speaker embedding shape: {speaker_embeddings.shape}")
inputs = self.processor(text=text, return_tensors="pt")
input_ids = inputs["input_ids"].to(self.device)
print("Generating speech...")
with torch.no_grad():
speaker_embeddings = speaker_embeddings.to(self.device)
if speaker_embeddings.dim() == 1:
speaker_embeddings = speaker_embeddings.unsqueeze(0)
speech = self.model.generate_speech(input_ids, speaker_embeddings, vocoder=self.vocoder)
speech_numpy = speech.cpu().numpy()
print(f"Generated audio shape: {speech_numpy.shape}")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
sf.write(tmp_file.name, speech_numpy, self.sample_rate)
print(f"Audio saved to: {tmp_file.name}")
del speech, input_ids
gc.collect()
return tmp_file.name, f"β
Speech generated successfully using {voice_type}!"
except Exception as e:
print(f"β Error in synthesize_speech: {str(e)}")
return None, f"β Error generating speech: {str(e)}"
print("π Initializing Voice Cloning TTS System...")
tts_system = VoiceCloningTTS()
def process_voice_upload(audio_file):
if audio_file is None:
return "β Please upload an audio file first.", gr.update(interactive=False), gr.update(interactive=False)
try:
print(f"Processing uploaded file: {audio_file}")
speaker_embedding, message = tts_system.extract_speaker_embedding(audio_file)
if speaker_embedding is not None:
tts_system.user_speaker_embeddings = speaker_embedding
print("β
Speaker embeddings saved successfully")
return message, gr.update(interactive=True), gr.update(interactive=True)
else:
return message, gr.update(interactive=False), gr.update(interactive=False)
except Exception as e:
error_msg = f"β Error processing audio: {str(e)}"
print(error_msg)
return error_msg, gr.update(interactive=False), gr.update(interactive=False)
def generate_speech(text, use_cloned_voice):
if not text.strip():
return None, "β Please enter some text to convert."
try:
print(f"Generating speech - Use cloned voice: {use_cloned_voice}")
audio_file, message = tts_system.synthesize_speech(text, use_cloned_voice)
return audio_file, message
except Exception as e:
error_msg = f"β Error generating speech: {str(e)}"
print(error_msg)
return None, error_msg
def clear_voice_profile():
tts_system.user_speaker_embeddings = None
return "π Voice profile cleared.", gr.update(interactive=False), gr.update(interactive=False)
def update_generate_button(text, use_cloned):
text_ready = bool(text.strip())
voice_ready = (not use_cloned) or (tts_system.user_speaker_embeddings is not None)
return gr.update(interactive=text_ready and voice_ready)
with gr.Blocks(title="Voice Cloning TTS System") as demo:
gr.Markdown("# Voice Cloning TTS System")
gr.Markdown("Upload an audio file to clone your voice and generate speech.")
with gr.Row():
with gr.Column():
voice_upload = gr.Audio(label="Upload Voice Sample", type="filepath", sources=["upload", "microphone"])
upload_status = gr.Textbox(label="Status", interactive=False)
clear_btn = gr.Button("Clear Voice Profile")
with gr.Column():
text_input = gr.Textbox(label="Text to Convert", lines=5)
use_cloned_voice = gr.Checkbox(label="Use Cloned Voice", value=True, interactive=False)
generate_btn = gr.Button("Generate Speech", interactive=False)
output_audio = gr.Audio(label="Generated Speech", type="filepath")
generation_status = gr.Textbox(label="Generation Status", interactive=False)
voice_upload.change(fn=process_voice_upload, inputs=[voice_upload], outputs=[upload_status, use_cloned_voice, generate_btn])
text_input.change(fn=update_generate_button, inputs=[text_input, use_cloned_voice], outputs=[generate_btn])
use_cloned_voice.change(fn=update_generate_button, inputs=[text_input, use_cloned_voice], outputs=[generate_btn])
generate_btn.click(fn=generate_speech, inputs=[text_input, use_cloned_voice], outputs=[output_audio, generation_status])
clear_btn.click(fn=clear_voice_profile, outputs=[upload_status, use_cloned_voice, generate_btn])
if __name__ == "__main__":
print("π Starting Voice Cloning TTS System...")
demo.launch() |