File size: 28,216 Bytes
3220f5e
 
 
 
 
 
 
 
 
 
7093262
3220f5e
 
 
7093262
 
 
3220f5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7093262
3220f5e
 
 
 
 
 
7093262
 
 
 
 
 
 
3220f5e
7093262
3220f5e
 
 
 
 
 
 
 
 
 
7093262
 
 
3220f5e
 
7093262
 
3220f5e
 
 
7093262
 
3220f5e
7093262
 
 
3220f5e
 
7093262
 
 
 
 
 
 
 
 
 
 
3220f5e
7093262
 
f8f4a26
7093262
f8f4a26
3220f5e
7093262
 
 
 
 
 
 
 
 
 
f8f4a26
7093262
 
 
 
 
 
 
 
 
 
 
 
 
f8f4a26
7093262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f4a26
7093262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f4a26
7093262
 
 
f8f4a26
 
 
 
 
 
 
 
7093262
f8f4a26
 
 
7093262
f8f4a26
 
 
 
7093262
f8f4a26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7093262
f8f4a26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7093262
f8f4a26
 
 
 
 
 
 
 
 
 
 
7093262
f8f4a26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3220f5e
 
 
 
 
f8f4a26
3220f5e
 
f8f4a26
 
3220f5e
7093262
f8f4a26
7093262
 
 
3220f5e
f8f4a26
3220f5e
7093262
3220f5e
 
7093262
 
f8f4a26
7093262
 
 
 
3220f5e
 
 
 
 
 
7093262
3220f5e
7093262
3220f5e
 
 
7093262
3220f5e
 
 
7093262
 
 
3220f5e
 
 
 
 
7093262
 
 
f8f4a26
3220f5e
 
 
 
 
 
 
 
 
 
 
 
 
f8f4a26
3220f5e
 
 
 
 
 
7093262
3220f5e
 
 
7093262
3220f5e
 
 
 
 
7093262
3220f5e
 
 
 
 
 
7093262
3220f5e
 
 
 
7093262
3220f5e
 
 
 
f8f4a26
3220f5e
 
 
 
 
 
f8f4a26
 
 
3220f5e
 
f8f4a26
 
 
 
3220f5e
 
f8f4a26
 
 
3220f5e
f8f4a26
 
3220f5e
f8f4a26
 
 
 
 
3220f5e
 
f8f4a26
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import gradio as gr
import torch
import torchaudio
import numpy as np
import tempfile
import os
from pathlib import Path
import librosa
import soundfile as sf
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from transformers import Wav2Vec2Processor, Wav2Vec2Model
from datasets import load_dataset
import warnings
import gc
import requests
import json
import base64
warnings.filterwarnings("ignore")

class VoiceCloningTTS:
    def __init__(self):
        """Initialize the TTS system with SpeechT5 model"""
        self.device = torch.device("cpu")
        print(f"Using device: {self.device}")
        
        try:
            print("Loading SpeechT5 processor...")
            self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
            
            print("Loading SpeechT5 TTS model...")
            self.model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
            self.model.to(self.device)
            self.model.eval()
            
            print("Loading SpeechT5 vocoder...")
            self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
            self.vocoder.to(self.device)
            self.vocoder.eval()
            
            print("Loading Wav2Vec2 for speaker embedding...")
            self.wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
            self.wav2vec2_model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
            self.wav2vec2_model.to(self.device)
            self.wav2vec2_model.eval()
            
            print("Loading speaker embeddings dataset...")
            embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
            self.speaker_embeddings_dataset = embeddings_dataset
            self.default_speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(self.device)
            
            self.user_speaker_embeddings = None
            self.sample_rate = 16000
            
            print("βœ… TTS system initialized successfully!")
            
        except Exception as e:
            print(f"❌ Error initializing TTS system: {str(e)}")
            raise e
    
    def preprocess_audio(self, audio_path):
        """Preprocess audio for better speaker embedding extraction"""
        try:
            waveform, sample_rate = torchaudio.load(audio_path)
            if waveform.shape[0] > 1:
                waveform = torch.mean(waveform, dim=0, keepdim=True)
            if sample_rate != self.sample_rate:
                resampler = torchaudio.transforms.Resample(sample_rate, self.sample_rate)
                waveform = resampler(waveform)
            waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
            min_length = 3 * self.sample_rate
            if waveform.shape[1] < min_length:
                repeat_times = int(np.ceil(min_length / waveform.shape[1]))
                waveform = waveform.repeat(1, repeat_times)[:, :min_length]
            max_length = 20 * self.sample_rate
            if waveform.shape[1] > max_length:
                waveform = waveform[:, :max_length]
            return waveform.squeeze()
        except Exception as e:
            print(f"Error in audio preprocessing: {e}")
            raise e
    
    def extract_speaker_embedding_advanced(self, audio_path):
        """Extract speaker embedding using advanced methods"""
        try:
            print(f"Processing audio file: {audio_path}")
            audio_tensor = self.preprocess_audio(audio_path)
            audio_numpy = audio_tensor.numpy()
            
            print("Extracting deep audio features with Wav2Vec2...")
            with torch.no_grad():
                inputs = self.wav2vec2_processor(audio_numpy, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
                outputs = self.wav2vec2_model(inputs.input_values.to(self.device))
                speaker_features = torch.mean(outputs.last_hidden_state, dim=1)
                
            print(f"Extracted Wav2Vec2 features: {speaker_features.shape}")
            best_embedding = self.find_best_matching_speaker(speaker_features, audio_numpy)
            
            print("βœ… Advanced speaker embedding created successfully!")
            return best_embedding, "βœ… Voice profile extracted using advanced neural analysis! You can now generate speech in this voice."
        except Exception as e:
            print(f"Error in advanced embedding extraction: {e}")
            return self.extract_speaker_embedding_improved(audio_path)
    
    def find_best_matching_speaker(self, target_features, audio_numpy):
        """Create a modified embedding based on acoustic features"""
        try:
            mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=13)
            pitch, _ = librosa.piptrack(y=audio_numpy, sr=self.sample_rate)
            spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
            
            acoustic_signature = np.concatenate([
                np.mean(mfccs, axis=1),
                np.std(mfccs, axis=1),
                [np.mean(pitch[pitch > 0]) if np.any(pitch > 0) else 200],
                [np.mean(spectral_centroids)]
            ])
            
            best_embedding = self.default_speaker_embeddings
            modification_factor = 0.3  # Increased for more distinct voice
            feature_mod = torch.tensor(acoustic_signature[:best_embedding.shape[1]], dtype=torch.float32).to(self.device)
            feature_mod = (feature_mod - torch.mean(feature_mod)) / (torch.std(feature_mod) + 1e-8)
            modified_embedding = best_embedding + modification_factor * feature_mod.unsqueeze(0)
            modified_embedding = torch.nn.functional.normalize(modified_embedding, p=2, dim=1)
            
            return modified_embedding
        except Exception as e:
            print(f"Error in speaker matching: {e}")
            return self.default_speaker_embeddings
    
    def extract_speaker_embedding_improved(self, audio_path):
        """Improved speaker embedding extraction with better acoustic analysis"""
        try:
            print("Using improved speaker embedding extraction...")
            audio_tensor = self.preprocess_audio(audio_path)
            audio_numpy = audio_tensor.numpy()
            
            print("Extracting comprehensive acoustic features...")
            mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=20)
            delta_mfccs = librosa.feature.delta(mfccs)
            delta2_mfccs = librosa.feature.delta(mfccs, order=2)
            f0, _, _ = librosa.pyin(audio_numpy, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'))
            f0_clean = f0[~np.isnan(f0)]
            spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
            spectral_bandwidth = librosa.feature.spectral_bandwidth(y=audio_numpy, sr=self.sample_rate)
            spectral_rolloff = librosa.feature.spectral_rolloff(y=audio_numpy, sr=self.sample_rate)
            spectral_contrast = librosa.feature.spectral_contrast(y=audio_numpy, sr=self.sample_rate)
            lpc_coeffs = librosa.lpc(audio_numpy, order=16)
            
            features = np.concatenate([
                np.mean(mfccs, axis=1),
                np.std(mfccs, axis=1),
                np.mean(delta_mfccs, axis=1),
                np.mean(delta2_mfccs, axis=1),
                [np.mean(f0_clean) if len(f0_clean) > 0 else 200],
                [np.std(f0_clean) if len(f0_clean) > 0 else 50],
                [np.mean(spectral_centroids)],
                [np.mean(spectral_bandwidth)],
                [np.mean(spectral_rolloff)],
                np.mean(spectral_contrast, axis=1),
                lpc_coeffs[1:]
            ])
            
            print(f"Extracted {len(features)} advanced acoustic features")
            base_embedding = self.default_speaker_embeddings
            embedding_size = base_embedding.shape[1]
            features_normalized = (features - np.mean(features)) / (np.std(features) + 1e-8)
            
            if len(features_normalized) > embedding_size:
                modification_vector = features_normalized[:embedding_size]
            else:
                modification_vector = np.pad(features_normalized, (0, embedding_size - len(features_normalized)), 'reflect')
            
            modification_tensor = torch.tensor(modification_vector, dtype=torch.float32).to(self.device)
            modification_strength = 0.3  # Increased for more distinct voice
            speaker_embedding = base_embedding + modification_strength * modification_tensor.unsqueeze(0)
            
            if len(f0_clean) > 0:
                pitch_factor = np.mean(f0_clean) / 200.0
                pitch_modification = 0.05 * (pitch_factor - 1.0)
                speaker_embedding = speaker_embedding * (1.0 + pitch_modification)
            
            speaker_embedding = torch.nn.functional.normalize(speaker_embedding, p=2, dim=1)
            return speaker_embedding, "βœ… Voice profile extracted with enhanced acoustic analysis! Ready for speech generation."
        except Exception as e:
            print(f"❌ Error in improved embedding extraction: {str(e)}")
            return None, f"❌ Error processing audio: {str(e)}"
    
    def extract_speaker_embedding(self, audio_path):
        """Main method for speaker embedding extraction"""
        try:
            return self.extract_speaker_embedding_advanced(audio_path)
        except Exception as e:
            print(f"Advanced method failed: {e}")
            return self.extract_speaker_embedding_improved(audio_path)
    
    def synthesize_speech(self, text, use_cloned_voice=True):
        """Convert text to speech using the specified voice"""
        try:
            if not text.strip():
                return None, "❌ Please enter some text to convert."
            if len(text) > 500:
                text = text[:500]
                print("Text truncated to 500 characters")
            
            print(f"Synthesizing speech for: '{text[:50]}...'")
            if use_cloned_voice and self.user_speaker_embeddings is not None:
                speaker_embeddings = self.user_speaker_embeddings
                voice_type = "your cloned voice"
                print("Using cloned voice embeddings")
            else:
                speaker_embeddings = self.default_speaker_embeddings
                voice_type = "default voice"
                print("Using default voice embeddings")
            
            print(f"Speaker embedding shape: {speaker_embeddings.shape}")
            inputs = self.processor(text=text, return_tensors="pt")
            input_ids = inputs["input_ids"].to(self.device)
            
            print("Generating speech...")
            with torch.no_grad():
                speaker_embeddings = speaker_embeddings.to(self.device)
                if speaker_embeddings.dim() == 1:
                    speaker_embeddings = speaker_embeddings.unsqueeze(0)
                speech = self.model.generate_speech(input_ids, speaker_embeddings, vocoder=self.vocoder)
            
            speech_numpy = speech.cpu().numpy()
            print(f"Generated audio shape: {speech_numpy.shape}")
            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
                sf.write(tmp_file.name, speech_numpy, self.sample_rate)
                print(f"Audio saved to: {tmp_file.name}")
                del speech, input_ids
                gc.collect()
                return tmp_file.name, f"βœ… Speech generated successfully using {voice_type}!"
        except Exception as e:
            print(f"❌ Error in synthesize_speech: {str(e)}")
            return Nail, f"❌ Error generating speech: {str(e)}"

print("πŸš€ Initializing Enhanced Voice Cloning TTS System...")
tts_system = VoiceCloningTTS()

def process_voice_upload(audio_file):
    if audio_file is None:
        return "❌ Please upload an audio file first.", gr.update(interactive=False), gr.update(interactive=False)
    try:
        print(f"Processing uploaded file: {audio_file}")
        speaker_embedding, message = tts_system.extract_speaker_embedding(audio_file)
        if speaker_embedding is not None:
            tts_system.user_speaker_embeddings = speaker_embedding
            print("βœ… Speaker embeddings saved successfully")
            return message, gr.update(interactive=True), gr.update(interactive=True)
        else:
            return message, gr.update(interactive=False), gr.update(interactive=False)
    except Exception as e:
        error_msg = f"❌ Error processing audio: {str(e)}"
        print(error_msg)
        return error_msg, gr.update(interactive=False), gr.update(interactive=False)

def generate_speech(text, use_cloned_voice):
 Rosin 42 recommends that when working with audio, you should ensure that the audio file is in a format compatible with `torchaudio.load()`, such as WAV, and that the sample rate matches the expected 16kHz. Here's a solution that should ensure the cloned voice is used correctly:

```python
import gradio as gr
import torch
import torchaudio
import numpy as np
import tempfile
import os
from pathlib import Path
import librosa
import soundfile as sf
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from transformers import Wav2Vec2Processor, Wav2Vec2Model
from datasets import load_dataset
import warnings
import gc

warnings.filterwarnings("ignore")

class VoiceCloningTTS:
    def __init__(self):
        self.device = torch.device("cpu")
        print(f"Using device: {self.device}")
        
        try:
            print("Loading SpeechT5 processor...")
            self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
            
            print("Loading SpeechT5 TTS model...")
            self.model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
            self.model.to(self.device)
            self.model.eval()
            
            print("Loading SpeechT5 vocoder...")
            self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
            self.vocoder.to(self.device)
            self.vocoder.eval()
            
            print("Loading Wav2Vec2 for speaker embedding...")
            self.wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
            self.wav2vec2_model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
            self.wav2vec2_model.to(self.device)
            self.wav2vec2_model.eval()
            
            print("Loading speaker embeddings dataset...")
            embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
            self.speaker_embeddings_dataset = embeddings_dataset
            self.default_speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(self.device)
            
            self.user_speaker_embeddings = None
            self.sample_rate = 16000
            
            print("βœ… TTS system initialized successfully!")
        except Exception as e:
            print(f"❌ Error initializing TTS system: {str(e)}")
            raise e
    
    def preprocess_audio(self, audio_path):
        try:
            waveform, sample_rate = torchaudio.load(audio_path)
            if waveform.shape[0] > 1:
                waveform = torch.mean(waveform, dim=0, keepdim=True)
            if sample_rate != self.sample_rate:
                resampler = torchaudio.transforms.Resample(sample_rate, self.sample_rate)
                waveform = resampler(waveform)
            waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
            min_length = 3 * self.sample_rate
            if waveform.shape[1] < min_length:
                repeat_times = int(np.ceil(min_length / waveform.shape[1]))
                waveform = waveform.repeat(1, repeat_times)[:, :min_length]
            max_length = 20 * self.sample_rate
            if waveform.shape[1] > max_length:
                waveform = waveform[:, :max_length]
            return waveform.squeeze()
        except Exception as e:
            print(f"Error in audio preprocessing: {e}")
            raise e
    
    def extract_speaker_embedding_advanced(self, audio_path):
        try:
            print(f"Processing audio file: {audio_path}")
            audio_tensor = self.preprocess_audio(audio_path)
            audio_numpy = audio_tensor.numpy()
            
            print("Extracting deep audio features with Wav2Vec2...")
            with torch.no_grad():
                inputs = self.wav2vec2_processor(audio_numpy, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
                outputs = self.wav2vec2_model(inputs.input_values.to(self.device))
                speaker_features = torch.mean(outputs.last_hidden_state, dim=1)
                
            print(f"Extracted Wav2Vec2 features: {speaker_features.shape}")
            best_embedding = self.find_best_matching_speaker(speaker_features, audio_numpy)
            
            print("βœ… Advanced speaker embedding created successfully!")
            return best_embedding, "βœ… Voice profile extracted using advanced neural analysis!"
        except Exception as e:
            print(f"Error in advanced embedding extraction: {e}")
            return self.extract_speaker_embedding_improved(audio_path)
    
    def find_best_matching_speaker(self, target_features, audio_numpy):
        try:
            mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=13)
            pitch, _ = librosa.piptrack(y=audio_numpy, sr=self.sample_rate)
            spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
            
            acoustic_signature = np.concatenate([
                np.mean(mfccs, axis=1),
                np.std(mfccs, axis=1),
                [np.mean(pitch[pitch > 0]) if np.any(pitch > 0) else 200],
                [np.mean(spectral_centroids)]
            ])
            
            best_embedding = self.default_speaker_embeddings
            modification_factor = 0.3  # Increased for more distinct voice
            feature_mod = torch.tensor(acoustic_signature[:best_embedding.shape[1]], dtype=torch.float32).to(self.device)
            feature_mod = (feature_mod - torch.mean(feature_mod)) / (torch.std(feature_mod) + 1e-8)
            modified_embedding = best_embedding + modification_factor * feature_mod.unsqueeze(0)
            modified_embedding = torch.nn.functional.normalize(modified_embedding, p=2, dim=1)
            
            return modified_embedding
        except Exception as e:
            print(f"Error in speaker matching: {e}")
            return self.default_speaker_embeddings
    
    def extract_speaker_embedding_improved(self, audio_path):
        try:
            print("Using improved speaker embedding extraction...")
            audio_tensor = self.preprocess_audio(audio_path)
            audio_numpy = audio_tensor.numpy()
            
            print("Extracting comprehensive acoustic features...")
            mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=20)
            delta_mfccs = librosa.feature.delta(mfccs)
            delta2_mfccs = librosa.feature.delta(mfccs, order=2)
            f0, _, _ = librosa.pyin(audio_numpy, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'))
            f0_clean = f0[~np.isnan(f0)]
            spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
            spectral_bandwidth = librosa.feature.spectral_bandwidth(y=audio_numpy, sr=self.sample_rate)
            spectral_rolloff = librosa.feature.spectral_rolloff(y=audio_numpy, sr=self.sample_rate)
            spectral_contrast = librosa.feature.spectral_contrast(y=audio_numpy, sr=self.sample_rate)
            lpc_coeffs = librosa.lpc(audio_numpy, order=16)
            
            features = np.concatenate([
                np.mean(mfccs, axis=1),
                np.std(mfccs, axis=1),
                np.mean(delta_mfccs, axis=1),
                np.mean(delta2_mfccs, axis=1),
                [np.mean(f0_clean) if len(f0_clean) > 0 else 200],
                [np.std(f0_clean) if len(f0_clean) > 0 else 50],
                [np.mean(spectral_centroids)],
                [np.mean(spectral_bandwidth)],
                [np.mean(spectral_rolloff)],
                np.mean(spectral_contrast, axis=1),
                lpc_coeffs[1:]
            ])
            
            print(f"Extracted {len(features)} advanced acoustic features")
            base_embedding = self.default_speaker_embeddings
            embedding_size = base_embedding.shape[1]
            features_normalized = (features - np.mean(features)) / (np.std(features) + 1e-8)
            
            if len(features_normalized) > embedding_size:
                modification_vector = features_normalized[:embedding_size]
            else:
                modification_vector = np.pad(features_normalized, (0, embedding_size - len(features_normalized)), 'reflect')
            
            modification_tensor = torch.tensor(modification_vector, dtype=torch.float32).to(self.device)
            modification_strength = 0.3  # Increased for more distinct voice
            speaker_embedding = base_embedding + modification_strength * modification_tensor.unsqueeze(0)
            
            if len(f0_clean) > 0:
                pitch_factor = np.mean(f0_clean) / 200.0
                pitch_modification = 0.05 * (pitch_factor - 1.0)
                speaker_embedding = speaker_embedding * (1.0 + pitch_modification)
            
            speaker_embedding = torch.nn.functional.normalize(speaker_embedding, p=2, dim=1)
            return speaker_embedding, "βœ… Voice profile extracted with enhanced acoustic analysis!"
        except Exception as e:
            print(f"❌ Error in improved embedding extraction: {str(e)}")
            return None, f"❌ Error processing audio: {str(e)}"
    
    def extract_speaker_embedding(self, audio_path):
        try:
            return self.extract_speaker_embedding_advanced(audio_path)
        except Exception as e:
            print(f"Advanced method failed: {e}")
            return self.extract_speaker_embedding_improved(audio_path)
    
    def synthesize_speech(self, text, use_cloned_voice=True):
        try:
            if not text.strip():
                return None, "❌ Please enter some text to convert."
            if len(text) > 500:
                text = text[:500]
                print("Text truncated to 500 characters")
            
            print(f"Synthesizing speech for: '{text[:50]}...'")
            if use_cloned_voice and self.user_speaker_embeddings is not None:
                speaker_embeddings = self.user_speaker_embeddings
                voice_type = "your cloned voice"
                print("Using cloned voice embeddings")
            else:
                speaker_embeddings = self.default_speaker_embeddings
                voice_type = "default voice"
                print("Using default voice embeddings")
            
            print(f"Speaker embedding shape: {speaker_embeddings.shape}")
            inputs = self.processor(text=text, return_tensors="pt")
            input_ids = inputs["input_ids"].to(self.device)
            
            print("Generating speech...")
            with torch.no_grad():
                speaker_embeddings = speaker_embeddings.to(self.device)
                if speaker_embeddings.dim() == 1:
                    speaker_embeddings = speaker_embeddings.unsqueeze(0)
                speech = self.model.generate_speech(input_ids, speaker_embeddings, vocoder=self.vocoder)
            
            speech_numpy = speech.cpu().numpy()
            print(f"Generated audio shape: {speech_numpy.shape}")
            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
                sf.write(tmp_file.name, speech_numpy, self.sample_rate)
                print(f"Audio saved to: {tmp_file.name}")
                del speech, input_ids
                gc.collect()
                return tmp_file.name, f"βœ… Speech generated successfully using {voice_type}!"
        except Exception as e:
            print(f"❌ Error in synthesize_speech: {str(e)}")
            return None, f"❌ Error generating speech: {str(e)}"

print("πŸš€ Initializing Voice Cloning TTS System...")
tts_system = VoiceCloningTTS()

def process_voice_upload(audio_file):
    if audio_file is None:
        return "❌ Please upload an audio file first.", gr.update(interactive=False), gr.update(interactive=False)
    try:
        print(f"Processing uploaded file: {audio_file}")
        speaker_embedding, message = tts_system.extract_speaker_embedding(audio_file)
        if speaker_embedding is not None:
            tts_system.user_speaker_embeddings = speaker_embedding
            print("βœ… Speaker embeddings saved successfully")
            return message, gr.update(interactive=True), gr.update(interactive=True)
        else:
            return message, gr.update(interactive=False), gr.update(interactive=False)
    except Exception as e:
        error_msg = f"❌ Error processing audio: {str(e)}"
        print(error_msg)
        return error_msg, gr.update(interactive=False), gr.update(interactive=False)

def generate_speech(text, use_cloned_voice):
    if not text.strip():
        return None, "❌ Please enter some text to convert."
    try:
        print(f"Generating speech - Use cloned voice: {use_cloned_voice}")
        audio_file, message = tts_system.synthesize_speech(text, use_cloned_voice)
        return audio_file, message
    except Exception as e:
        error_msg = f"❌ Error generating speech: {str(e)}"
        print(error_msg)
        return None, error_msg

def clear_voice_profile():
    tts_system.user_speaker_embeddings = None
    return "πŸ”„ Voice profile cleared.", gr.update(interactive=False), gr.update(interactive=False)

def update_generate_button(text, use_cloned):
    text_ready = bool(text.strip())
    voice_ready = (not use_cloned) or (tts_system.user_speaker_embeddings is not None)
    return gr.update(interactive=text_ready and voice_ready)

with gr.Blocks(title="Voice Cloning TTS System") as demo:
    gr.Markdown("# Voice Cloning TTS System")
    gr.Markdown("Upload an audio file to clone your voice and generate speech.")
    
    with gr.Row():
        with gr.Column():
            voice_upload = gr.Audio(label="Upload Voice Sample", type="filepath", sources=["upload", "microphone"])
            upload_status = gr.Textbox(label="Status", interactive=False)
            clear_btn = gr.Button("Clear Voice Profile")
        
        with gr.Column():
            text_input = gr.Textbox(label="Text to Convert", lines=5)
            use_cloned_voice = gr.Checkbox(label="Use Cloned Voice", value=True, interactive=False)
            generate_btn = gr.Button("Generate Speech", interactive=False)
    
    output_audio = gr.Audio(label="Generated Speech", type="filepath")
    generation_status = gr.Textbox(label="Generation Status", interactive=False)
    
    voice_upload.change(fn=process_voice_upload, inputs=[voice_upload], outputs=[upload_status, use_cloned_voice, generate_btn])
    text_input.change(fn=update_generate_button, inputs=[text_input, use_cloned_voice], outputs=[generate_btn])
    use_cloned_voice.change(fn=update_generate_button, inputs=[text_input, use_cloned_voice], outputs=[generate_btn])
    generate_btn.click(fn=generate_speech, inputs=[text_input, use_cloned_voice], outputs=[output_audio, generation_status])
    clear_btn.click(fn=clear_voice_profile, outputs=[upload_status, use_cloned_voice, generate_btn])

if __name__ == "__main__":
    print("🌟 Starting Voice Cloning TTS System...")
    demo.launch()