File size: 14,886 Bytes
3220f5e
 
 
 
 
 
 
 
 
 
7093262
3220f5e
 
 
f8f4a26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7093262
f8f4a26
 
 
 
 
 
 
 
 
 
 
7093262
f8f4a26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3220f5e
 
 
 
 
f8f4a26
3220f5e
 
f8f4a26
 
3220f5e
7093262
f8f4a26
7093262
 
 
3220f5e
f8f4a26
3220f5e
7093262
3220f5e
 
7093262
 
f8f4a26
7093262
 
 
 
3220f5e
 
 
 
 
 
7093262
3220f5e
7093262
3220f5e
 
 
7093262
3220f5e
 
 
7093262
 
 
3220f5e
 
 
 
 
7093262
 
 
f8f4a26
3220f5e
 
 
 
 
 
 
 
 
 
 
 
 
f8f4a26
3220f5e
 
 
 
 
 
7093262
3220f5e
 
 
7093262
3220f5e
 
 
 
 
7093262
3220f5e
 
 
 
 
 
7093262
3220f5e
 
 
 
7093262
3220f5e
 
 
 
f8f4a26
3220f5e
 
 
 
 
 
f8f4a26
 
 
3220f5e
 
f8f4a26
 
 
 
3220f5e
 
f8f4a26
 
 
3220f5e
f8f4a26
 
3220f5e
f8f4a26
 
 
 
 
3220f5e
 
f8f4a26
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import gradio as gr
import torch
import torchaudio
import numpy as np
import tempfile
import os
from pathlib import Path
import librosa
import soundfile as sf
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from transformers import Wav2Vec2Processor, Wav2Vec2Model
from datasets import load_dataset
import warnings
import gc

warnings.filterwarnings("ignore")

class VoiceCloningTTS:
    def __init__(self):
        self.device = torch.device("cpu")
        print(f"Using device: {self.device}")
        
        try:
            print("Loading SpeechT5 processor...")
            self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
            
            print("Loading SpeechT5 TTS model...")
            self.model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
            self.model.to(self.device)
            self.model.eval()
            
            print("Loading SpeechT5 vocoder...")
            self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
            self.vocoder.to(self.device)
            self.vocoder.eval()
            
            print("Loading Wav2Vec2 for speaker embedding...")
            self.wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
            self.wav2vec2_model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
            self.wav2vec2_model.to(self.device)
            self.wav2vec2_model.eval()
            
            print("Loading speaker embeddings dataset...")
            embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
            self.speaker_embeddings_dataset = embeddings_dataset
            self.default_speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(self.device)
            
            self.user_speaker_embeddings = None
            self.sample_rate = 16000
            
            print("βœ… TTS system initialized successfully!")
        except Exception as e:
            print(f"❌ Error initializing TTS system: {str(e)}")
            raise e
    
    def preprocess_audio(self, audio_path):
        try:
            waveform, sample_rate = torchaudio.load(audio_path)
            if waveform.shape[0] > 1:
                waveform = torch.mean(waveform, dim=0, keepdim=True)
            if sample_rate != self.sample_rate:
                resampler = torchaudio.transforms.Resample(sample_rate, self.sample_rate)
                waveform = resampler(waveform)
            waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
            min_length = 3 * self.sample_rate
            if waveform.shape[1] < min_length:
                repeat_times = int(np.ceil(min_length / waveform.shape[1]))
                waveform = waveform.repeat(1, repeat_times)[:, :min_length]
            max_length = 20 * self.sample_rate
            if waveform.shape[1] > max_length:
                waveform = waveform[:, :max_length]
            return waveform.squeeze()
        except Exception as e:
            print(f"Error in audio preprocessing: {e}")
            raise e
    
    def extract_speaker_embedding_advanced(self, audio_path):
        try:
            print(f"Processing audio file: {audio_path}")
            audio_tensor = self.preprocess_audio(audio_path)
            audio_numpy = audio_tensor.numpy()
            
            print("Extracting deep audio features with Wav2Vec2...")
            with torch.no_grad():
                inputs = self.wav2vec2_processor(audio_numpy, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
                outputs = self.wav2vec2_model(inputs.input_values.to(self.device))
                speaker_features = torch.mean(outputs.last_hidden_state, dim=1)
                
            print(f"Extracted Wav2Vec2 features: {speaker_features.shape}")
            best_embedding = self.find_best_matching_speaker(speaker_features, audio_numpy)
            
            print("βœ… Advanced speaker embedding created successfully!")
            return best_embedding, "βœ… Voice profile extracted using advanced neural analysis!"
        except Exception as e:
            print(f"Error in advanced embedding extraction: {e}")
            return self.extract_speaker_embedding_improved(audio_path)
    
    def find_best_matching_speaker(self, target_features, audio_numpy):
        try:
            mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=13)
            pitch, _ = librosa.piptrack(y=audio_numpy, sr=self.sample_rate)
            spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
            
            acoustic_signature = np.concatenate([
                np.mean(mfccs, axis=1),
                np.std(mfccs, axis=1),
                [np.mean(pitch[pitch > 0]) if np.any(pitch > 0) else 200],
                [np.mean(spectral_centroids)]
            ])
            
            best_embedding = self.default_speaker_embeddings
            modification_factor = 0.3  # Increased for more distinct voice
            feature_mod = torch.tensor(acoustic_signature[:best_embedding.shape[1]], dtype=torch.float32).to(self.device)
            feature_mod = (feature_mod - torch.mean(feature_mod)) / (torch.std(feature_mod) + 1e-8)
            modified_embedding = best_embedding + modification_factor * feature_mod.unsqueeze(0)
            modified_embedding = torch.nn.functional.normalize(modified_embedding, p=2, dim=1)
            
            return modified_embedding
        except Exception as e:
            print(f"Error in speaker matching: {e}")
            return self.default_speaker_embeddings
    
    def extract_speaker_embedding_improved(self, audio_path):
        try:
            print("Using improved speaker embedding extraction...")
            audio_tensor = self.preprocess_audio(audio_path)
            audio_numpy = audio_tensor.numpy()
            
            print("Extracting comprehensive acoustic features...")
            mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=20)
            delta_mfccs = librosa.feature.delta(mfccs)
            delta2_mfccs = librosa.feature.delta(mfccs, order=2)
            f0, _, _ = librosa.pyin(audio_numpy, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'))
            f0_clean = f0[~np.isnan(f0)]
            spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
            spectral_bandwidth = librosa.feature.spectral_bandwidth(y=audio_numpy, sr=self.sample_rate)
            spectral_rolloff = librosa.feature.spectral_rolloff(y=audio_numpy, sr=self.sample_rate)
            spectral_contrast = librosa.feature.spectral_contrast(y=audio_numpy, sr=self.sample_rate)
            lpc_coeffs = librosa.lpc(audio_numpy, order=16)
            
            features = np.concatenate([
                np.mean(mfccs, axis=1),
                np.std(mfccs, axis=1),
                np.mean(delta_mfccs, axis=1),
                np.mean(delta2_mfccs, axis=1),
                [np.mean(f0_clean) if len(f0_clean) > 0 else 200],
                [np.std(f0_clean) if len(f0_clean) > 0 else 50],
                [np.mean(spectral_centroids)],
                [np.mean(spectral_bandwidth)],
                [np.mean(spectral_rolloff)],
                np.mean(spectral_contrast, axis=1),
                lpc_coeffs[1:]
            ])
            
            print(f"Extracted {len(features)} advanced acoustic features")
            base_embedding = self.default_speaker_embeddings
            embedding_size = base_embedding.shape[1]
            features_normalized = (features - np.mean(features)) / (np.std(features) + 1e-8)
            
            if len(features_normalized) > embedding_size:
                modification_vector = features_normalized[:embedding_size]
            else:
                modification_vector = np.pad(features_normalized, (0, embedding_size - len(features_normalized)), 'reflect')
            
            modification_tensor = torch.tensor(modification_vector, dtype=torch.float32).to(self.device)
            modification_strength = 0.3  # Increased for more distinct voice
            speaker_embedding = base_embedding + modification_strength * modification_tensor.unsqueeze(0)
            
            if len(f0_clean) > 0:
                pitch_factor = np.mean(f0_clean) / 200.0
                pitch_modification = 0.05 * (pitch_factor - 1.0)
                speaker_embedding = speaker_embedding * (1.0 + pitch_modification)
            
            speaker_embedding = torch.nn.functional.normalize(speaker_embedding, p=2, dim=1)
            return speaker_embedding, "βœ… Voice profile extracted with enhanced acoustic analysis!"
        except Exception as e:
            print(f"❌ Error in improved embedding extraction: {str(e)}")
            return None, f"❌ Error processing audio: {str(e)}"
    
    def extract_speaker_embedding(self, audio_path):
        try:
            return self.extract_speaker_embedding_advanced(audio_path)
        except Exception as e:
            print(f"Advanced method failed: {e}")
            return self.extract_speaker_embedding_improved(audio_path)
    
    def synthesize_speech(self, text, use_cloned_voice=True):
        try:
            if not text.strip():
                return None, "❌ Please enter some text to convert."
            if len(text) > 500:
                text = text[:500]
                print("Text truncated to 500 characters")
            
            print(f"Synthesizing speech for: '{text[:50]}...'")
            if use_cloned_voice and self.user_speaker_embeddings is not None:
                speaker_embeddings = self.user_speaker_embeddings
                voice_type = "your cloned voice"
                print("Using cloned voice embeddings")
            else:
                speaker_embeddings = self.default_speaker_embeddings
                voice_type = "default voice"
                print("Using default voice embeddings")
            
            print(f"Speaker embedding shape: {speaker_embeddings.shape}")
            inputs = self.processor(text=text, return_tensors="pt")
            input_ids = inputs["input_ids"].to(self.device)
            
            print("Generating speech...")
            with torch.no_grad():
                speaker_embeddings = speaker_embeddings.to(self.device)
                if speaker_embeddings.dim() == 1:
                    speaker_embeddings = speaker_embeddings.unsqueeze(0)
                speech = self.model.generate_speech(input_ids, speaker_embeddings, vocoder=self.vocoder)
            
            speech_numpy = speech.cpu().numpy()
            print(f"Generated audio shape: {speech_numpy.shape}")
            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
                sf.write(tmp_file.name, speech_numpy, self.sample_rate)
                print(f"Audio saved to: {tmp_file.name}")
                del speech, input_ids
                gc.collect()
                return tmp_file.name, f"βœ… Speech generated successfully using {voice_type}!"
        except Exception as e:
            print(f"❌ Error in synthesize_speech: {str(e)}")
            return None, f"❌ Error generating speech: {str(e)}"

print("πŸš€ Initializing Voice Cloning TTS System...")
tts_system = VoiceCloningTTS()

def process_voice_upload(audio_file):
    if audio_file is None:
        return "❌ Please upload an audio file first.", gr.update(interactive=False), gr.update(interactive=False)
    try:
        print(f"Processing uploaded file: {audio_file}")
        speaker_embedding, message = tts_system.extract_speaker_embedding(audio_file)
        if speaker_embedding is not None:
            tts_system.user_speaker_embeddings = speaker_embedding
            print("βœ… Speaker embeddings saved successfully")
            return message, gr.update(interactive=True), gr.update(interactive=True)
        else:
            return message, gr.update(interactive=False), gr.update(interactive=False)
    except Exception as e:
        error_msg = f"❌ Error processing audio: {str(e)}"
        print(error_msg)
        return error_msg, gr.update(interactive=False), gr.update(interactive=False)

def generate_speech(text, use_cloned_voice):
    if not text.strip():
        return None, "❌ Please enter some text to convert."
    try:
        print(f"Generating speech - Use cloned voice: {use_cloned_voice}")
        audio_file, message = tts_system.synthesize_speech(text, use_cloned_voice)
        return audio_file, message
    except Exception as e:
        error_msg = f"❌ Error generating speech: {str(e)}"
        print(error_msg)
        return None, error_msg

def clear_voice_profile():
    tts_system.user_speaker_embeddings = None
    return "πŸ”„ Voice profile cleared.", gr.update(interactive=False), gr.update(interactive=False)

def update_generate_button(text, use_cloned):
    text_ready = bool(text.strip())
    voice_ready = (not use_cloned) or (tts_system.user_speaker_embeddings is not None)
    return gr.update(interactive=text_ready and voice_ready)

with gr.Blocks(title="Voice Cloning TTS System") as demo:
    gr.Markdown("# Voice Cloning TTS System")
    gr.Markdown("Upload an audio file to clone your voice and generate speech.")
    
    with gr.Row():
        with gr.Column():
            voice_upload = gr.Audio(label="Upload Voice Sample", type="filepath", sources=["upload", "microphone"])
            upload_status = gr.Textbox(label="Status", interactive=False)
            clear_btn = gr.Button("Clear Voice Profile")
        
        with gr.Column():
            text_input = gr.Textbox(label="Text to Convert", lines=5)
            use_cloned_voice = gr.Checkbox(label="Use Cloned Voice", value=True, interactive=False)
            generate_btn = gr.Button("Generate Speech", interactive=False)
    
    output_audio = gr.Audio(label="Generated Speech", type="filepath")
    generation_status = gr.Textbox(label="Generation Status", interactive=False)
    
    voice_upload.change(fn=process_voice_upload, inputs=[voice_upload], outputs=[upload_status, use_cloned_voice, generate_btn])
    text_input.change(fn=update_generate_button, inputs=[text_input, use_cloned_voice], outputs=[generate_btn])
    use_cloned_voice.change(fn=update_generate_button, inputs=[text_input, use_cloned_voice], outputs=[generate_btn])
    generate_btn.click(fn=generate_speech, inputs=[text_input, use_cloned_voice], outputs=[output_audio, generation_status])
    clear_btn.click(fn=clear_voice_profile, outputs=[upload_status, use_cloned_voice, generate_btn])

if __name__ == "__main__":
    print("🌟 Starting Voice Cloning TTS System...")
    demo.launch()