Spaces:
Sleeping
Sleeping
import streamlit as st # | |
import moviepy.editor as mp | |
import speech_recognition as sr | |
from pydub import AudioSegment | |
import tempfile | |
import os | |
import io | |
from transformers import pipeline | |
import matplotlib.pyplot as plt | |
# Function to convert video to audio | |
def video_to_audio(video_file): | |
# Load the video using moviepy | |
video = mp.VideoFileClip(video_file) | |
# Extract audio | |
audio = video.audio | |
temp_audio_path = tempfile.mktemp(suffix=".mp3") | |
# Write the audio to a file | |
audio.write_audiofile(temp_audio_path) | |
return temp_audio_path | |
# Function to convert MP3 audio to WAV | |
def convert_mp3_to_wav(mp3_file): | |
# Load the MP3 file using pydub | |
audio = AudioSegment.from_mp3(mp3_file) | |
# Create a temporary WAV file | |
temp_wav_path = tempfile.mktemp(suffix=".wav") | |
# Export the audio to the temporary WAV file | |
audio.export(temp_wav_path, format="wav") | |
return temp_wav_path | |
# Function to transcribe audio to text | |
def transcribe_audio(audio_file): | |
# Initialize recognizer | |
recognizer = sr.Recognizer() | |
# Load the audio file using speech_recognition | |
audio = sr.AudioFile(audio_file) | |
with audio as source: | |
audio_data = recognizer.record(source) | |
try: | |
# Transcribe the audio data to text using Google Web Speech API | |
text = recognizer.recognize_google(audio_data) | |
return text | |
except sr.UnknownValueError: | |
return "Audio could not be understood." | |
except sr.RequestError: | |
return "Could not request results from Google Speech Recognition service." | |
# Function to perform emotion detection using Hugging Face transformers | |
def detect_emotion(text): | |
# Load emotion detection pipeline | |
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) | |
# Get the emotion predictions | |
result = emotion_pipeline(text) | |
# Extract the emotion with the highest score | |
emotions = {emotion['label']: emotion['score'] for emotion in result[0]} | |
return emotions | |
# Streamlit app layout | |
st.title("Video and Audio to Text Transcription with Emotion Detection and Visualization") | |
st.write("Upload a video or audio file to convert it to transcription, detect emotions, and visualize the audio waveform.") | |
# Create tabs to separate video and audio uploads | |
tab = st.selectbox("Select the type of file to upload", ["Video", "Audio"]) | |
if tab == "Video": | |
# File uploader for video | |
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi"]) | |
if uploaded_video is not None: | |
# Save the uploaded video file temporarily | |
with tempfile.NamedTemporaryFile(delete=False) as tmp_video: | |
tmp_video.write(uploaded_video.read()) | |
tmp_video_path = tmp_video.name | |
# Add an "Analyze Video" button | |
if st.button("Analyze Video"): | |
with st.spinner("Processing video... Please wait."): | |
# Convert video to audio | |
audio_file = video_to_audio(tmp_video_path) | |
# Convert the extracted MP3 audio to WAV | |
wav_audio_file = convert_mp3_to_wav(audio_file) | |
# Transcribe audio to text | |
transcription = transcribe_audio(wav_audio_file) | |
# Show the transcription | |
st.text_area("Transcription", transcription, height=300) | |
# Emotion detection | |
emotions = detect_emotion(transcription) | |
st.write(f"Detected Emotions: {emotions}") | |
# Store transcription and audio file in session state | |
st.session_state.transcription = transcription | |
# Store the audio file as a BytesIO object in memory | |
with open(wav_audio_file, "rb") as f: | |
audio_data = f.read() | |
st.session_state.wav_audio_file = io.BytesIO(audio_data) | |
# Cleanup temporary files | |
os.remove(tmp_video_path) | |
os.remove(audio_file) | |
# Check if transcription and audio file are stored in session state | |
if 'transcription' in st.session_state and 'wav_audio_file' in st.session_state: | |
# Provide the audio file to the user for download | |
st.audio(st.session_state.wav_audio_file, format='audio/wav') | |
# Add download buttons for the transcription and audio | |
# Downloadable transcription file | |
st.download_button( | |
label="Download Transcription", | |
data=st.session_state.transcription, | |
file_name="transcription.txt", | |
mime="text/plain" | |
) | |
# Downloadable audio file | |
st.download_button( | |
label="Download Audio", | |
data=st.session_state.wav_audio_file, | |
file_name="converted_audio.wav", | |
mime="audio/wav" | |
) | |
elif tab == "Audio": | |
# File uploader for audio | |
uploaded_audio = st.file_uploader("Upload Audio", type=["wav", "mp3"]) | |
if uploaded_audio is not None: | |
# Save the uploaded audio file temporarily | |
with tempfile.NamedTemporaryFile(delete=False) as tmp_audio: | |
tmp_audio.write(uploaded_audio.read()) | |
tmp_audio_path = tmp_audio.name | |
# Add an "Analyze Audio" button | |
if st.button("Analyze Audio"): | |
with st.spinner("Processing audio... Please wait."): | |
# Convert audio to WAV if it's in MP3 format | |
if uploaded_audio.type == "audio/mpeg": | |
wav_audio_file = convert_mp3_to_wav(tmp_audio_path) | |
else: | |
wav_audio_file = tmp_audio_path | |
# Transcribe audio to text | |
transcription = transcribe_audio(wav_audio_file) | |
# Show the transcription | |
st.text_area("Transcription", transcription, height=300) | |
# Emotion detection | |
emotions = detect_emotion(transcription) | |
st.write(f"Detected Emotions: {emotions}") | |
# Store transcription in session state | |
st.session_state.transcription_audio = transcription | |
# Store the audio file as a BytesIO object in memory | |
with open(wav_audio_file, "rb") as f: | |
audio_data = f.read() | |
st.session_state.wav_audio_file_audio = io.BytesIO(audio_data) | |
# Cleanup temporary audio file | |
os.remove(tmp_audio_path) | |
# Check if transcription and audio file are stored in session state | |
if 'transcription_audio' in st.session_state and 'wav_audio_file_audio' in st.session_state: | |
# Provide the audio file to the user for download | |
st.audio(st.session_state.wav_audio_file_audio, format='audio/wav') | |
# Add download buttons for the transcription and audio | |
# Downloadable transcription file | |
st.download_button( | |
label="Download Transcription", | |
data=st.session_state.transcription_audio, | |
file_name="transcription_audio.txt", | |
mime="text/plain" | |
) | |
# Downloadable audio file | |
st.download_button( | |
label="Download Audio", | |
data=st.session_state.wav_audio_file_audio, | |
file_name="converted_audio_audio.wav", | |
mime="audio/wav" | |
) |