File size: 7,616 Bytes
cb8b31a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import streamlit as st # import moviepy.editor as mp import speech_recognition as sr from pydub import AudioSegment import tempfile import os import io from transformers import pipeline import matplotlib.pyplot as plt # Function to convert video to audio def video_to_audio(video_file): # Load the video using moviepy video = mp.VideoFileClip(video_file) # Extract audio audio = video.audio temp_audio_path = tempfile.mktemp(suffix=".mp3") # Write the audio to a file audio.write_audiofile(temp_audio_path) return temp_audio_path # Function to convert MP3 audio to WAV def convert_mp3_to_wav(mp3_file): # Load the MP3 file using pydub audio = AudioSegment.from_mp3(mp3_file) # Create a temporary WAV file temp_wav_path = tempfile.mktemp(suffix=".wav") # Export the audio to the temporary WAV file audio.export(temp_wav_path, format="wav") return temp_wav_path # Function to transcribe audio to text def transcribe_audio(audio_file): # Initialize recognizer recognizer = sr.Recognizer() # Load the audio file using speech_recognition audio = sr.AudioFile(audio_file) with audio as source: audio_data = recognizer.record(source) try: # Transcribe the audio data to text using Google Web Speech API text = recognizer.recognize_google(audio_data) return text except sr.UnknownValueError: return "Audio could not be understood." except sr.RequestError: return "Could not request results from Google Speech Recognition service." # Function to perform emotion detection using Hugging Face transformers def detect_emotion(text): # Load emotion detection pipeline emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) # Get the emotion predictions result = emotion_pipeline(text) # Extract the emotion with the highest score emotions = {emotion['label']: emotion['score'] for emotion in result[0]} return emotions # Streamlit app layout st.title("Video and Audio to Text Transcription with Emotion Detection and Visualization") st.write("Upload a video or audio file to convert it to transcription, detect emotions, and visualize the audio waveform.") # Create tabs to separate video and audio uploads tab = st.selectbox("Select the type of file to upload", ["Video", "Audio"]) if tab == "Video": # File uploader for video uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi"]) if uploaded_video is not None: # Save the uploaded video file temporarily with tempfile.NamedTemporaryFile(delete=False) as tmp_video: tmp_video.write(uploaded_video.read()) tmp_video_path = tmp_video.name # Add an "Analyze Video" button if st.button("Analyze Video"): with st.spinner("Processing video... Please wait."): # Convert video to audio audio_file = video_to_audio(tmp_video_path) # Convert the extracted MP3 audio to WAV wav_audio_file = convert_mp3_to_wav(audio_file) # Transcribe audio to text transcription = transcribe_audio(wav_audio_file) # Show the transcription st.text_area("Transcription", transcription, height=300) # Emotion detection emotions = detect_emotion(transcription) st.write(f"Detected Emotions: {emotions}") # Store transcription and audio file in session state st.session_state.transcription = transcription # Store the audio file as a BytesIO object in memory with open(wav_audio_file, "rb") as f: audio_data = f.read() st.session_state.wav_audio_file = io.BytesIO(audio_data) # Cleanup temporary files os.remove(tmp_video_path) os.remove(audio_file) # Check if transcription and audio file are stored in session state if 'transcription' in st.session_state and 'wav_audio_file' in st.session_state: # Provide the audio file to the user for download st.audio(st.session_state.wav_audio_file, format='audio/wav') # Add download buttons for the transcription and audio # Downloadable transcription file st.download_button( label="Download Transcription", data=st.session_state.transcription, file_name="transcription.txt", mime="text/plain" ) # Downloadable audio file st.download_button( label="Download Audio", data=st.session_state.wav_audio_file, file_name="converted_audio.wav", mime="audio/wav" ) elif tab == "Audio": # File uploader for audio uploaded_audio = st.file_uploader("Upload Audio", type=["wav", "mp3"]) if uploaded_audio is not None: # Save the uploaded audio file temporarily with tempfile.NamedTemporaryFile(delete=False) as tmp_audio: tmp_audio.write(uploaded_audio.read()) tmp_audio_path = tmp_audio.name # Add an "Analyze Audio" button if st.button("Analyze Audio"): with st.spinner("Processing audio... Please wait."): # Convert audio to WAV if it's in MP3 format if uploaded_audio.type == "audio/mpeg": wav_audio_file = convert_mp3_to_wav(tmp_audio_path) else: wav_audio_file = tmp_audio_path # Transcribe audio to text transcription = transcribe_audio(wav_audio_file) # Show the transcription st.text_area("Transcription", transcription, height=300) # Emotion detection emotions = detect_emotion(transcription) st.write(f"Detected Emotions: {emotions}") # Store transcription in session state st.session_state.transcription_audio = transcription # Store the audio file as a BytesIO object in memory with open(wav_audio_file, "rb") as f: audio_data = f.read() st.session_state.wav_audio_file_audio = io.BytesIO(audio_data) # Cleanup temporary audio file os.remove(tmp_audio_path) # Check if transcription and audio file are stored in session state if 'transcription_audio' in st.session_state and 'wav_audio_file_audio' in st.session_state: # Provide the audio file to the user for download st.audio(st.session_state.wav_audio_file_audio, format='audio/wav') # Add download buttons for the transcription and audio # Downloadable transcription file st.download_button( label="Download Transcription", data=st.session_state.transcription_audio, file_name="transcription_audio.txt", mime="text/plain" ) # Downloadable audio file st.download_button( label="Download Audio", data=st.session_state.wav_audio_file_audio, file_name="converted_audio_audio.wav", mime="audio/wav" ) |