shukdevdatta123 commited on
Commit
1133027
·
verified ·
1 Parent(s): a90abcc

Upload 5 files

Browse files
Files changed (5) hide show
  1. app.py +35 -0
  2. config.json +23 -0
  3. special_tokens_map.json +7 -0
  4. tokenizer_config.json +57 -0
  5. vocab.txt +0 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import DistilBertTokenizer, TFDistilBertForSequenceClassification
3
+ import tensorflow as tf
4
+
5
+ # Load the pre-trained model and tokenizer
6
+ model_path = 'drive-download-20241117T174204Z-001/'
7
+ loaded_model = TFDistilBertForSequenceClassification.from_pretrained(model_path)
8
+ loaded_tokenizer = DistilBertTokenizer.from_pretrained(model_path)
9
+
10
+ # Define the prediction function
11
+ def predict_with_loaded_model(in_sentences):
12
+ labels = ["non-stress", "stress"]
13
+ inputs = loaded_tokenizer(in_sentences, return_tensors="tf", padding=True, truncation=True, max_length=512)
14
+ predictions = loaded_model(inputs)
15
+ predicted_labels = tf.argmax(predictions.logits, axis=-1).numpy()
16
+ predicted_probs = tf.nn.softmax(predictions.logits, axis=-1).numpy()
17
+
18
+ return [{"text": sentence, "confidence": probs.tolist(), "label": labels[label]} for sentence, label, probs in zip(in_sentences, predicted_labels, predicted_probs)]
19
+
20
+ # Streamlit interface
21
+ st.title("Stress Prediction with DistilBERT")
22
+
23
+ # Add a text input box for the user to enter a sentence
24
+ user_input = st.text_area("Enter a sentence or text:", "")
25
+
26
+ # When the user clicks "Predict", run the prediction function
27
+ if st.button("Predict"):
28
+ if user_input:
29
+ # Make the prediction using the model
30
+ prediction = predict_with_loaded_model([user_input])[0]
31
+ st.write(f"Text: {prediction['text']}")
32
+ st.write(f"Prediction: {prediction['label']}")
33
+ st.write(f"Confidence: {prediction['confidence']}")
34
+ else:
35
+ st.write("Please enter a sentence to predict.")
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForSequenceClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "transformers_version": "4.44.2",
22
+ "vocab_size": 30522
23
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "DistilBertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff