shukdevdatta123's picture
Update app.py
d39c096 verified
raw
history blame
17.9 kB
import gradio as gr
import openai
import base64
from PIL import Image
import io
import os
import tempfile
import fitz # PyMuPDF for PDF handling
# Function to extract text from PDF files
def extract_text_from_pdf(pdf_file):
try:
text = ""
pdf_document = fitz.open(pdf_file)
for page_num in range(len(pdf_document)):
page = pdf_document[page_num]
text += page.get_text()
pdf_document.close()
return text
except Exception as e:
return f"Error extracting text from PDF: {str(e)}"
# Function to generate MCQ quiz from PDF content
def generate_mcq_quiz(pdf_content, num_questions, openai_api_key, model_choice):
if not openai_api_key:
return "Error: No API key provided."
openai.api_key = openai_api_key
prompt = f"""Based on the following document content, generate {num_questions} multiple-choice quiz questions.
For each question:
1. Create a clear question based on key concepts in the document
2. Provide 4 possible answers (A, B, C, D)
3. Indicate the correct answer
4. Briefly explain why the answer is correct
Format the output clearly with each question numbered and separated.
Document content:
{pdf_content[:8000]} # Limiting content to avoid token limits
"""
try:
messages = [
{"role": "user", "content": [{"type": "text", "text": prompt}]}
]
response = openai.ChatCompletion.create(
model=model_choice,
messages=messages,
max_completion_tokens=2000
)
return response["choices"][0]["message"]["content"]
except Exception as e:
return f"Error generating quiz: {str(e)}"
# Function to send the request to OpenAI API with an image, text or PDF input
def generate_response(input_text, image, pdf_content, openai_api_key, reasoning_effort="medium", model_choice="o1"):
if not openai_api_key:
return "Error: No API key provided."
openai.api_key = openai_api_key
# Process the input depending on whether it's text, image, or a PDF-related query
if pdf_content and input_text:
# For PDF queries, we combine the PDF content with the user's question
prompt = f"Based on the following document content, please answer this question: '{input_text}'\n\nDocument content:\n{pdf_content}"
input_content = prompt
elif image:
# Convert the image to base64 string
image_info = get_base64_string_from_image(image)
input_content = f"data:image/png;base64,{image_info}"
else:
# Plain text input
input_content = input_text
# Prepare the messages for OpenAI API
if model_choice == "o1":
if image and not pdf_content:
messages = [
{"role": "user", "content": [{"type": "image_url", "image_url": {"url": input_content}}]}
]
else:
messages = [
{"role": "user", "content": [{"type": "text", "text": input_content}]}
]
elif model_choice == "o3-mini":
messages = [
{"role": "user", "content": [{"type": "text", "text": input_content}]}
]
try:
# Call OpenAI API with the selected model
response = openai.ChatCompletion.create(
model=model_choice,
messages=messages,
reasoning_effort=reasoning_effort,
max_completion_tokens=2000
)
return response["choices"][0]["message"]["content"]
except Exception as e:
return f"Error calling OpenAI API: {str(e)}"
# Function to convert an uploaded image to a base64 string
def get_base64_string_from_image(pil_image):
# Convert PIL Image to bytes
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_bytes = buffered.getvalue()
base64_str = base64.b64encode(img_bytes).decode("utf-8")
return base64_str
# Function to transcribe audio to text using OpenAI Whisper API
def transcribe_audio(audio, openai_api_key):
if not openai_api_key:
return "Error: No API key provided."
openai.api_key = openai_api_key
try:
# Open the audio file and pass it as a file object
with open(audio, 'rb') as audio_file:
audio_file_content = audio_file.read()
# Use the correct transcription API call
audio_file_obj = io.BytesIO(audio_file_content)
audio_file_obj.name = 'audio.wav' # Set a name for the file object (as OpenAI expects it)
# Transcribe the audio to text using OpenAI's whisper model
audio_file_transcription = openai.Audio.transcribe(file=audio_file_obj, model="whisper-1")
return audio_file_transcription['text']
except Exception as e:
return f"Error transcribing audio: {str(e)}"
# The function that will be used by Gradio interface
def chatbot(input_text, image, audio, pdf_file, openai_api_key, reasoning_effort, model_choice, pdf_content, num_quiz_questions, pdf_quiz_mode, history=[]):
# If there's audio, transcribe it to text
if audio:
input_text = transcribe_audio(audio, openai_api_key)
# If a new PDF is uploaded, extract its text
new_pdf_content = pdf_content
if pdf_file is not None:
new_pdf_content = extract_text_from_pdf(pdf_file)
# Check if we're in PDF quiz mode
if pdf_quiz_mode and new_pdf_content:
# Generate MCQ quiz questions
response = generate_mcq_quiz(new_pdf_content, num_quiz_questions, openai_api_key, model_choice)
history.append((f"User: [Uploaded PDF for Quiz - {num_quiz_questions} questions]", f"Assistant: {response}"))
else:
# Regular chat mode - generate the response
response = generate_response(input_text, image, new_pdf_content, openai_api_key, reasoning_effort, model_choice)
# Append the response to the history
if input_text:
history.append((f"User: {input_text}", f"Assistant: {response}"))
else:
history.append((f"User: [Uploaded content]", f"Assistant: {response}"))
return "", None, None, None, new_pdf_content, history
# Function to clear the chat history and PDF content
def clear_history():
return "", None, None, None, "", []
# Function to process a newly uploaded PDF
def process_pdf(pdf_file):
if pdf_file is None:
return ""
return extract_text_from_pdf(pdf_file)
# Function to update visible components based on input type selection
def update_input_type(choice):
if choice == "Text":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif choice == "Image":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif choice == "Voice":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif choice == "PDF":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif choice == "PDF(QUIZ)":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
# Custom CSS styles with animations and button colors
custom_css = """
/* General body styles */
.gradio-container {
font-family: 'Arial', sans-serif;
background-color: #f8f9fa;
color: #333;
}
/* Header styles */
.gradio-header {
background-color: #007bff;
color: white;
padding: 20px;
text-align: center;
border-radius: 8px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
animation: fadeIn 1s ease-out;
}
.gradio-header h1 {
font-size: 2.5rem;
}
.gradio-header h3 {
font-size: 1.2rem;
margin-top: 10px;
}
/* Chatbot container styles */
.gradio-chatbot {
background-color: #fff;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
max-height: 500px;
overflow-y: auto;
animation: fadeIn 2s ease-out;
}
/* Input field styles */
.gradio-textbox, .gradio-dropdown, .gradio-image, .gradio-audio, .gradio-file, .gradio-slider {
border-radius: 8px;
border: 2px solid #ccc;
padding: 10px;
margin-bottom: 10px;
width: 100%;
font-size: 1rem;
transition: all 0.3s ease;
}
.gradio-textbox:focus, .gradio-dropdown:focus, .gradio-image:focus, .gradio-audio:focus, .gradio-file:focus, .gradio-slider:focus {
border-color: #007bff;
}
/* Button styles */
/* Send Button: Sky Blue */
#submit-btn {
background-color: #00aaff; /* Sky blue */
color: white;
border: none;
border-radius: 8px;
padding: 10px 19px;
font-size: 1.1rem;
cursor: pointer;
transition: all 0.3s ease;
margin-left: auto;
margin-right: auto;
display: block;
margin-top: 10px;
}
#submit-btn:hover {
background-color: #0099cc; /* Slightly darker blue */
}
#submit-btn:active {
transform: scale(0.95);
}
#clear-history {
background-color: #f04e4e; /* Slightly Darker red */
color: white;
border: none;
border-radius: 8px;
padding: 10px 13px;
font-size: 1.1rem;
cursor: pointer;
transition: all 0.3s ease;
margin-top: 10px;
}
#clear-history:hover {
background-color: #f5a4a4; /* Light red */
}
#clear-history:active {
transform: scale(0.95);
}
/* Input type selector buttons */
#input-type-group {
display: flex;
justify-content: center;
gap: 10px;
margin-bottom: 20px;
}
.input-type-btn {
background-color: #6c757d;
color: white;
border: none;
border-radius: 8px;
padding: 10px 15px;
font-size: 1rem;
cursor: pointer;
transition: all 0.3s ease;
}
.input-type-btn.selected {
background-color: #007bff;
}
.input-type-btn:hover {
background-color: #5a6268;
}
/* Chat history styles */
.gradio-chatbot .message {
margin-bottom: 10px;
}
.gradio-chatbot .user {
background-color: #007bff;
color: white;
padding: 10px;
border-radius: 12px;
max-width: 70%;
animation: slideInUser 0.5s ease-out;
}
.gradio-chatbot .assistant {
background-color: #f1f1f1;
color: #333;
padding: 10px;
border-radius: 12px;
max-width: 70%;
margin-left: auto;
animation: slideInAssistant 0.5s ease-out;
}
/* Animation keyframes */
@keyframes fadeIn {
0% { opacity: 0; }
100% { opacity: 1; }
}
@keyframes slideInUser {
0% { transform: translateX(-100%); }
100% { transform: translateX(0); }
}
@keyframes slideInAssistant {
0% { transform: translateX(100%); }
100% { transform: translateX(0); }
}
/* Mobile responsiveness */
@media (max-width: 768px) {
.gradio-header h1 {
font-size: 1.8rem;
}
.gradio-header h3 {
font-size: 1rem;
}
.gradio-chatbot {
max-height: 400px;
}
.gradio-textbox, .gradio-dropdown, .gradio-image, .gradio-audio, .gradio-file, .gradio-slider {
width: 100%;
}
#submit-btn, #clear-history {
width: 100%;
margin-left: 0;
}
}
"""
# Gradio interface setup
def create_interface():
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("""
<div class="gradio-header">
<h1>Multimodal Chatbot (Text + Image + Voice + PDF + Quiz)</h1>
<h3>Interact with a chatbot using text, image, voice, or PDF inputs</h3>
</div>
""")
# Add a description with an expandable accordion
with gr.Accordion("Click to expand for details", open=False):
gr.Markdown("""
### Description:
This is a multimodal chatbot that can handle text, image, voice, PDF inputs, and generate quizzes from PDFs.
- You can ask questions or provide text, and the assistant will respond.
- You can upload an image, and the assistant will process it and answer questions about the image.
- Voice input is supported: You can upload or record an audio file, and it will be transcribed to text and sent to the assistant.
- PDF support: Upload a PDF and ask questions about its content.
- PDF Quiz: Upload a PDF and specify how many MCQ questions you want generated based on the content.
- Enter your OpenAI API key to start interacting with the model.
- You can use the 'Clear History' button to remove the conversation history.
- "o1" is for image, voice, PDF and text chat and "o3-mini" is for text, PDF and voice chat only.
### Reasoning Effort:
The reasoning effort controls how complex or detailed the assistant's answers should be.
- **Low**: Provides quick, concise answers with minimal reasoning or details.
- **Medium**: Offers a balanced response with a reasonable level of detail and thought.
- **High**: Produces more detailed, analytical, or thoughtful responses, requiring deeper reasoning.
""")
# Store PDF content as a state variable
pdf_content = gr.State("")
with gr.Row():
openai_api_key = gr.Textbox(label="Enter OpenAI API Key", type="password", placeholder="sk-...", interactive=True)
# Input type selector
with gr.Row():
input_type = gr.Radio(
["Text", "Image", "Voice", "PDF", "PDF(QUIZ)"],
label="Choose Input Type",
value="Text"
)
# Create the input components (initially text is visible, others are hidden)
with gr.Row():
# Text input
input_text = gr.Textbox(
label="Enter Text Question",
placeholder="Ask a question or provide text",
lines=2,
visible=True
)
# Image input
image_input = gr.Image(
label="Upload an Image",
type="pil",
visible=False
)
# Audio input
audio_input = gr.Audio(
label="Upload or Record Audio",
type="filepath",
visible=False
)
# PDF input
pdf_input = gr.File(
label="Upload your PDF",
file_types=[".pdf"],
visible=False
)
# Quiz specific components
quiz_questions_slider = gr.Slider(
minimum=1,
maximum=20,
value=5,
step=1,
label="Number of Quiz Questions",
visible=False
)
# Hidden state for quiz mode
quiz_mode = gr.Checkbox(
label="Quiz Mode",
visible=False,
value=False
)
with gr.Row():
reasoning_effort = gr.Dropdown(
label="Reasoning Effort",
choices=["low", "medium", "high"],
value="medium"
)
model_choice = gr.Dropdown(
label="Select Model",
choices=["o1", "o3-mini"],
value="o1" # Default to 'o1' for image-related tasks
)
submit_btn = gr.Button("Ask!", elem_id="submit-btn")
clear_btn = gr.Button("Clear History", elem_id="clear-history")
chat_history = gr.Chatbot()
# Connect the input type selector to the update function
input_type.change(
fn=update_input_type,
inputs=[input_type],
outputs=[input_text, image_input, audio_input, pdf_input, quiz_questions_slider, quiz_mode]
)
# Process PDF when uploaded
pdf_input.change(
fn=process_pdf,
inputs=[pdf_input],
outputs=[pdf_content]
)
# Update quiz mode when PDF(QUIZ) is selected
def update_quiz_mode(choice):
return True if choice == "PDF(QUIZ)" else False
input_type.change(
fn=update_quiz_mode,
inputs=[input_type],
outputs=[quiz_mode]
)
# Button interactions
submit_btn.click(
fn=chatbot,
inputs=[input_text, image_input, audio_input, pdf_input, openai_api_key, reasoning_effort, model_choice, pdf_content, quiz_questions_slider, quiz_mode],
outputs=[input_text, image_input, audio_input, pdf_input, pdf_content, chat_history]
)
clear_btn.click(
fn=clear_history,
inputs=[],
outputs=[input_text, image_input, audio_input, pdf_input, pdf_content, chat_history]
)
return demo
# Run the interface
if __name__ == "__main__":
demo = create_interface()
demo.launch()