|
import gradio as gr |
|
import openai |
|
import base64 |
|
from PIL import Image |
|
import io |
|
import os |
|
import tempfile |
|
import fitz |
|
|
|
|
|
def extract_text_from_pdf(pdf_file): |
|
try: |
|
text = "" |
|
pdf_document = fitz.open(pdf_file) |
|
|
|
for page_num in range(len(pdf_document)): |
|
page = pdf_document[page_num] |
|
text += page.get_text() |
|
|
|
pdf_document.close() |
|
return text |
|
except Exception as e: |
|
return f"Error extracting text from PDF: {str(e)}" |
|
|
|
|
|
def generate_mcq_quiz(pdf_content, num_questions, openai_api_key, model_choice): |
|
if not openai_api_key: |
|
return "Error: No API key provided." |
|
|
|
openai.api_key = openai_api_key |
|
|
|
|
|
limited_content = pdf_content[:8000] if len(pdf_content) > 8000 else pdf_content |
|
|
|
prompt = f"""Based on the following document content, generate {num_questions} multiple-choice quiz questions. |
|
For each question: |
|
1. Create a clear question based on key concepts in the document |
|
2. Provide 4 possible answers (A, B, C, D) |
|
3. Indicate the correct answer |
|
4. Briefly explain why the answer is correct |
|
|
|
Format the output clearly with each question numbered and separated. |
|
|
|
Document content: |
|
{limited_content} |
|
""" |
|
|
|
try: |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
response = openai.ChatCompletion.create( |
|
model=model_choice, |
|
messages=messages |
|
) |
|
|
|
return response.choices[0].message.content |
|
except Exception as e: |
|
return f"Error generating quiz: {str(e)}" |
|
|
|
|
|
def generate_response(input_text, image, pdf_content, openai_api_key, reasoning_effort="medium", model_choice="o1"): |
|
if not openai_api_key: |
|
return "Error: No API key provided." |
|
|
|
openai.api_key = openai_api_key |
|
|
|
|
|
if pdf_content and input_text: |
|
|
|
prompt = f"Based on the following document content, please answer this question: '{input_text}'\n\nDocument content:\n{pdf_content}" |
|
input_content = prompt |
|
elif image: |
|
|
|
image_info = get_base64_string_from_image(image) |
|
input_content = f"data:image/png;base64,{image_info}" |
|
else: |
|
|
|
input_content = input_text |
|
|
|
|
|
if model_choice == "o1": |
|
if image and not pdf_content: |
|
messages = [ |
|
{"role": "user", "content": [{"type": "image_url", "image_url": {"url": input_content}}]} |
|
] |
|
else: |
|
messages = [ |
|
{"role": "user", "content": input_content} |
|
] |
|
elif model_choice == "o3-mini": |
|
messages = [ |
|
{"role": "user", "content": input_content} |
|
] |
|
|
|
try: |
|
|
|
response = openai.ChatCompletion.create( |
|
model=model_choice, |
|
messages=messages, |
|
max_completion_tokens=2000 |
|
) |
|
|
|
return response.choices[0].message.content |
|
except Exception as e: |
|
return f"Error calling OpenAI API: {str(e)}" |
|
|
|
|
|
def get_base64_string_from_image(pil_image): |
|
|
|
buffered = io.BytesIO() |
|
pil_image.save(buffered, format="PNG") |
|
img_bytes = buffered.getvalue() |
|
base64_str = base64.b64encode(img_bytes).decode("utf-8") |
|
return base64_str |
|
|
|
|
|
def transcribe_audio(audio, openai_api_key): |
|
if not openai_api_key: |
|
return "Error: No API key provided." |
|
|
|
openai.api_key = openai_api_key |
|
|
|
try: |
|
|
|
with open(audio, 'rb') as audio_file: |
|
audio_file_content = audio_file.read() |
|
|
|
|
|
audio_file_obj = io.BytesIO(audio_file_content) |
|
audio_file_obj.name = 'audio.wav' |
|
|
|
|
|
audio_file_transcription = openai.Audio.transcribe(file=audio_file_obj, model="whisper-1") |
|
return audio_file_transcription.text |
|
except Exception as e: |
|
return f"Error transcribing audio: {str(e)}" |
|
|
|
|
|
def chatbot(input_text, image, audio, pdf_file, openai_api_key, reasoning_effort, model_choice, pdf_content, num_quiz_questions, pdf_quiz_mode, history): |
|
if history is None: |
|
history = [] |
|
|
|
|
|
if audio: |
|
input_text = transcribe_audio(audio, openai_api_key) |
|
|
|
|
|
new_pdf_content = pdf_content |
|
if pdf_file is not None: |
|
new_pdf_content = extract_text_from_pdf(pdf_file) |
|
|
|
|
|
if pdf_quiz_mode: |
|
if new_pdf_content: |
|
|
|
quiz_response = generate_mcq_quiz(new_pdf_content, int(num_quiz_questions), openai_api_key, model_choice) |
|
history.append((f"User: [Uploaded PDF for Quiz - {int(num_quiz_questions)} questions]", f"Assistant: {quiz_response}")) |
|
else: |
|
history.append(("User: [Attempted to generate quiz without PDF]", "Assistant: Please upload a PDF file to generate quiz questions.")) |
|
else: |
|
|
|
response = generate_response(input_text, image, new_pdf_content, openai_api_key, reasoning_effort, model_choice) |
|
|
|
|
|
if input_text: |
|
history.append((f"User: {input_text}", f"Assistant: {response}")) |
|
elif image is not None: |
|
history.append((f"User: [Uploaded image]", f"Assistant: {response}")) |
|
elif pdf_file is not None: |
|
history.append((f"User: [Uploaded PDF]", f"Assistant: {response}")) |
|
else: |
|
history.append((f"User: [No input provided]", f"Assistant: Please provide some input (text, image, or PDF) for me to respond to.")) |
|
|
|
return "", None, None, None, new_pdf_content, history |
|
|
|
|
|
def clear_history(): |
|
return "", None, None, None, "", [] |
|
|
|
|
|
def process_pdf(pdf_file): |
|
if pdf_file is None: |
|
return "" |
|
return extract_text_from_pdf(pdf_file) |
|
|
|
|
|
def update_input_type(choice): |
|
if choice == "Text": |
|
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=False) |
|
elif choice == "Image": |
|
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=False) |
|
elif choice == "Voice": |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(value=False) |
|
elif choice == "PDF": |
|
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value=False) |
|
elif choice == "PDF(QUIZ)": |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(value=True) |
|
|
|
|
|
custom_css = """ |
|
/* General body styles */ |
|
.gradio-container { |
|
font-family: 'Arial', sans-serif; |
|
background-color: #f0f4f8; /* Lighter blue-gray background */ |
|
color: #2d3748;; |
|
} |
|
/* Header styles */ |
|
.gradio-header { |
|
background: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */ |
|
color: white; |
|
padding: 20px; |
|
text-align: center; |
|
border-radius: 8px; |
|
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2); |
|
animation: fadeIn 1s ease-out; |
|
} |
|
.gradio-header h1 { |
|
font-size: 2.5rem; |
|
} |
|
.gradio-header h3 { |
|
font-size: 1.2rem; |
|
margin-top: 10px; |
|
} |
|
/* Chatbot container styles */ |
|
.gradio-chatbot { |
|
background-color: #fff; |
|
border-radius: 10px; |
|
padding: 20px; |
|
box-shadow: 0 6px 18px rgba(0, 0, 0, 0.1); |
|
border-left: 4px solid #4a00e0; /* Accent border */ |
|
} |
|
/* Input field styles */ |
|
.gradio-textbox, .gradio-dropdown, .gradio-image, .gradio-audio, .gradio-file, .gradio-slider { |
|
border-radius: 8px; |
|
border: 2px solid #e2e8f0; |
|
background-color: #f8fafc; |
|
} |
|
.gradio-textbox:focus, .gradio-dropdown:focus, .gradio-image:focus, .gradio-audio:focus, .gradio-file:focus, .gradio-slider:focus { |
|
border-color: #8e2de2; |
|
box-shadow: 0 0 0 3px rgba(142, 45, 226, 0.2); |
|
} |
|
/* Button styles */ |
|
/* Send Button: Sky Blue */ |
|
#submit-btn { |
|
background: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */ |
|
color: white; |
|
border: none; |
|
border-radius: 8px; |
|
padding: 10px 19px; |
|
font-size: 1.1rem; |
|
cursor: pointer; |
|
transition: all 0.3s ease; |
|
margin-left: auto; |
|
margin-right: auto; |
|
display: block; |
|
margin-top: 10px; |
|
} |
|
#submit-btn:hover { |
|
background: linear-gradient(135deg, #5b10f1 0%, #9f3ef3 100%); /* Slightly lighter */ |
|
box-shadow: 0 6px 8px rgba(74, 0, 224, 0.4); |
|
} |
|
#submit-btn:active { |
|
transform: scale(0.95); |
|
} |
|
#clear-history { |
|
ackground-color: #e53e3e; /* Red */ |
|
color: black; |
|
border: none; |
|
border-radius: 8px; |
|
padding: 10px 13px; |
|
font-size: 1.1rem; |
|
cursor: pointer; |
|
transition: all 0.3s ease; |
|
margin-top: 10px; |
|
box-shadow: 0 4px 6px rgba(229, 62, 62, 0.3); |
|
} |
|
#clear-history:hover { |
|
background-color: #f56565; /* Lighter red */ |
|
box-shadow: 0 6px 8px rgba(229, 62, 62, 0.4); |
|
} |
|
#clear-history:active { |
|
transform: scale(0.95); |
|
} |
|
/* Input type selector buttons */ |
|
#input-type-group { |
|
display: flex; |
|
justify-content: center; |
|
gap: 10px; |
|
margin-bottom: 20px; |
|
} |
|
.input-type-btn { |
|
background-color: #718096; /* Slate gray */ |
|
color: white; |
|
border: none; |
|
border-radius: 8px; |
|
padding: 10px 15px; |
|
font-size: 1rem; |
|
cursor: pointer; |
|
transition: all 0.3s ease; |
|
} |
|
.input-type-btn.selected { |
|
background-color: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */ |
|
} |
|
.input-type-btn:hover { |
|
background-color: #4a5568; /* Darker slate */ |
|
} |
|
/* Chat history styles */ |
|
.gradio-chatbot .message { |
|
margin-bottom: 10px; |
|
} |
|
.gradio-chatbot .user { |
|
background-color: linear-gradient(135deg, #4a00e0 0%, #8e2de2 100%); /* Purple gradient */ |
|
color: white; |
|
padding: 10px; |
|
border-radius: 12px; |
|
max-width: 70%; |
|
animation: slideInUser 0.5s ease-out; |
|
} |
|
.gradio-chatbot .assistant { |
|
background-color: #f0f4f8; /* Light blue-gray */ |
|
color: #2d3748; |
|
padding: 10px; |
|
border-radius: 12px; |
|
max-width: 70%; |
|
margin-left: auto; |
|
animation: slideInAssistant 0.5s ease-out; |
|
} |
|
/* Animation keyframes */ |
|
@keyframes fadeIn { |
|
0% { opacity: 0; } |
|
100% { opacity: 1; } |
|
} |
|
@keyframes slideInUser { |
|
0% { transform: translateX(-100%); } |
|
100% { transform: translateX(0); } |
|
} |
|
@keyframes slideInAssistant { |
|
0% { transform: translateX(100%); } |
|
100% { transform: translateX(0); } |
|
} |
|
/* Mobile responsiveness */ |
|
@media (max-width: 768px) { |
|
.gradio-header h1 { |
|
font-size: 1.8rem; |
|
} |
|
.gradio-header h3 { |
|
font-size: 1rem; |
|
} |
|
.gradio-chatbot { |
|
max-height: 400px; |
|
} |
|
.gradio-textbox, .gradio-dropdown, .gradio-image, .gradio-audio, .gradio-file, .gradio-slider { |
|
width: 100%; |
|
} |
|
#submit-btn, #clear-history { |
|
width: 100%; |
|
margin-left: 0; |
|
} |
|
} |
|
""" |
|
|
|
|
|
def create_interface(): |
|
with gr.Blocks(css=custom_css) as demo: |
|
gr.Markdown(""" |
|
<div class="gradio-header"> |
|
<h1>Multimodal Chatbot (Text + Image + Voice + PDF + Quiz)</h1> |
|
<h3>Interact with a chatbot using text, image, voice, or PDF inputs</h3> |
|
</div> |
|
""") |
|
|
|
|
|
with gr.Accordion("Click to expand for details", open=False): |
|
gr.Markdown(""" |
|
### Description: |
|
This is a multimodal chatbot that can handle text, image, voice, PDF inputs, and generate quizzes from PDFs. |
|
- You can ask questions or provide text, and the assistant will respond. |
|
- You can upload an image, and the assistant will process it and answer questions about the image. |
|
- Voice input is supported: You can upload or record an audio file, and it will be transcribed to text and sent to the assistant. |
|
- PDF support: Upload a PDF and ask questions about its content. |
|
- PDF Quiz: Upload a PDF and specify how many MCQ questions you want generated based on the content. |
|
- Enter your OpenAI API key to start interacting with the model. |
|
- You can use the 'Clear History' button to remove the conversation history. |
|
- "o1" is for image, voice, PDF and text chat and "o3-mini" is for text, PDF and voice chat only. |
|
### Reasoning Effort: |
|
The reasoning effort controls how complex or detailed the assistant's answers should be. |
|
- **Low**: Provides quick, concise answers with minimal reasoning or details. |
|
- **Medium**: Offers a balanced response with a reasonable level of detail and thought. |
|
- **High**: Produces more detailed, analytical, or thoughtful responses, requiring deeper reasoning. |
|
""") |
|
|
|
|
|
pdf_content = gr.State("") |
|
|
|
with gr.Row(): |
|
openai_api_key = gr.Textbox(label="Enter OpenAI API Key", type="password", placeholder="sk-...", interactive=True) |
|
|
|
|
|
with gr.Row(): |
|
input_type = gr.Radio( |
|
["Text", "Image", "Voice", "PDF", "PDF(QUIZ)"], |
|
label="Choose Input Type", |
|
value="Text" |
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
|
input_text = gr.Textbox( |
|
label="Enter Text Question", |
|
placeholder="Ask a question or provide text", |
|
lines=2, |
|
visible=True |
|
) |
|
|
|
|
|
image_input = gr.Image( |
|
label="Upload an Image", |
|
type="pil", |
|
visible=False |
|
) |
|
|
|
|
|
audio_input = gr.Audio( |
|
label="Upload or Record Audio", |
|
type="filepath", |
|
visible=False |
|
) |
|
|
|
|
|
pdf_input = gr.File( |
|
label="Upload your PDF", |
|
file_types=[".pdf"], |
|
visible=False |
|
) |
|
|
|
|
|
quiz_questions_slider = gr.Slider( |
|
minimum=1, |
|
maximum=20, |
|
value=5, |
|
step=1, |
|
label="Number of Quiz Questions", |
|
visible=False |
|
) |
|
|
|
|
|
quiz_mode = gr.Checkbox( |
|
label="Quiz Mode", |
|
visible=False, |
|
value=False |
|
) |
|
|
|
with gr.Row(): |
|
reasoning_effort = gr.Dropdown( |
|
label="Reasoning Effort", |
|
choices=["low", "medium", "high"], |
|
value="medium" |
|
) |
|
model_choice = gr.Dropdown( |
|
label="Select Model", |
|
choices=["o1", "o3-mini"], |
|
value="o1" |
|
) |
|
submit_btn = gr.Button("Ask!", elem_id="submit-btn") |
|
clear_btn = gr.Button("Clear History", elem_id="clear-history") |
|
|
|
chat_history = gr.Chatbot() |
|
|
|
|
|
input_type.change( |
|
fn=update_input_type, |
|
inputs=[input_type], |
|
outputs=[input_text, image_input, audio_input, pdf_input, quiz_questions_slider, quiz_mode] |
|
) |
|
|
|
|
|
pdf_input.change( |
|
fn=process_pdf, |
|
inputs=[pdf_input], |
|
outputs=[pdf_content] |
|
) |
|
|
|
|
|
submit_btn.click( |
|
fn=chatbot, |
|
inputs=[ |
|
input_text, |
|
image_input, |
|
audio_input, |
|
pdf_input, |
|
openai_api_key, |
|
reasoning_effort, |
|
model_choice, |
|
pdf_content, |
|
quiz_questions_slider, |
|
quiz_mode, |
|
chat_history |
|
], |
|
outputs=[ |
|
input_text, |
|
image_input, |
|
audio_input, |
|
pdf_input, |
|
pdf_content, |
|
chat_history |
|
] |
|
) |
|
|
|
clear_btn.click( |
|
fn=clear_history, |
|
inputs=[], |
|
outputs=[input_text, image_input, audio_input, pdf_input, pdf_content, chat_history] |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
demo = create_interface() |
|
demo.launch() |