Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,25 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import openai
|
3 |
-
from kokoro import KPipeline, KModel
|
4 |
-
import random
|
5 |
import os
|
|
|
6 |
import torch
|
7 |
-
import time
|
8 |
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
# Check if GPU is available
|
13 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
14 |
-
|
15 |
-
# Initialize the models and pipelines (for TTS)
|
16 |
-
# Initialize the models and pipelines (for TTS)
|
17 |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
18 |
-
|
19 |
-
# Fixed the iteration and dictionary comprehension for pipelines
|
20 |
-
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in ['a', 'b', 'e', 'f', 'h', 'i', 'j', 'p', 'z']}
|
21 |
-
# Load lexicon for specific languages
|
22 |
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
23 |
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
with open(f'{lang}.txt', 'r') as r:
|
29 |
-
random_texts[lang] = [line.strip() for line in r]
|
30 |
-
|
31 |
-
def get_random_text(voice):
|
32 |
-
lang = dict(a='en', b='en')[voice[0]]
|
33 |
-
return random.choice(random_texts[lang])
|
34 |
|
35 |
-
# Generate function to create speech from text
|
36 |
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
|
|
37 |
pipeline = pipelines[voice[0]]
|
38 |
pack = pipeline.load_voice(voice)
|
39 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
@@ -54,23 +40,18 @@ def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
|
54 |
return (24000, audio.numpy()), ps
|
55 |
return None, ''
|
56 |
|
57 |
-
#
|
58 |
-
def
|
59 |
-
|
60 |
-
try:
|
61 |
-
prompt = f"Translate the following text from {lang_code} to English: \n\n{text}"
|
62 |
-
response = openai.ChatCompletion.create(
|
63 |
-
model="gpt-4",
|
64 |
-
messages=[{"role": "system", "content": "You are a helpful assistant that translates text."},
|
65 |
-
{"role": "user", "content": prompt}]
|
66 |
-
)
|
67 |
-
translated_text = response['choices'][0]['message']['content'].strip()
|
68 |
-
return translated_text
|
69 |
-
except Exception as e:
|
70 |
-
return f"Error: {str(e)}"
|
71 |
|
72 |
-
def
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
pack = pipeline.load_voice(voice)
|
75 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
76 |
for _, ps, _ in pipeline(text, voice, speed):
|
@@ -87,114 +68,131 @@ def generate_audio_from_text(text, lang_code, voice, speed, use_gpu=True):
|
|
87 |
audio = models[False](ps, ref_s, speed)
|
88 |
else:
|
89 |
raise gr.Error(e)
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
# Define your available voices here in the CHOICES dictionary
|
93 |
CHOICES = {
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
}
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
with gr.Blocks() as app:
|
168 |
-
gr.
|
|
|
169 |
with gr.Row():
|
170 |
with gr.Column():
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
179 |
with gr.Column():
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
translated_text = translate_to_english(api_key, text, lang_code)
|
189 |
-
translated_audio = generate_audio_from_text(translated_text, 'a', voice, speed, use_gpu)
|
190 |
-
return translated_audio, translated_text
|
191 |
-
|
192 |
-
translate_btn.click(fn=handle_translation, inputs=[input_text, openai_api_key, voice, speed, use_gpu], outputs=[out_audio, out_text])
|
193 |
-
|
194 |
-
def generate_and_play(text, voice, speed, use_gpu):
|
195 |
-
audio, tokens = generate_first(text, voice, speed, use_gpu)
|
196 |
-
return audio, tokens
|
197 |
-
|
198 |
-
generate_btn.click(fn=generate_and_play, inputs=[input_text, voice, speed, use_gpu], outputs=[out_audio, out_text])
|
199 |
-
|
200 |
-
app.launch()
|
|
|
1 |
+
import spaces
|
2 |
+
from kokoro import KModel, KPipeline
|
3 |
import gradio as gr
|
|
|
|
|
|
|
4 |
import os
|
5 |
+
import random
|
6 |
import torch
|
|
|
7 |
|
8 |
+
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
|
9 |
+
CHAR_LIMIT = None if IS_DUPLICATE else 5000
|
10 |
|
|
|
11 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
|
|
|
|
|
|
12 |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
13 |
+
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
|
|
|
|
|
|
|
14 |
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
15 |
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
|
16 |
|
17 |
+
@spaces.GPU(duration=10)
|
18 |
+
def forward_gpu(ps, ref_s, speed):
|
19 |
+
return models[True](ps, ref_s, speed)
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
21 |
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
22 |
+
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
23 |
pipeline = pipelines[voice[0]]
|
24 |
pack = pipeline.load_voice(voice)
|
25 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
|
|
40 |
return (24000, audio.numpy()), ps
|
41 |
return None, ''
|
42 |
|
43 |
+
# Arena API
|
44 |
+
def predict(text, voice='af_heart', speed=1):
|
45 |
+
return generate_first(text, voice, speed, use_gpu=False)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
def tokenize_first(text, voice='af_heart'):
|
48 |
+
# Split the input text into words and return as a list of words (fix applied here)
|
49 |
+
words = text.split() # This splits the text into words based on spaces
|
50 |
+
return words # Return a list of words
|
51 |
+
|
52 |
+
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
53 |
+
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
54 |
+
pipeline = pipelines[voice[0]]
|
55 |
pack = pipeline.load_voice(voice)
|
56 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
57 |
for _, ps, _ in pipeline(text, voice, speed):
|
|
|
68 |
audio = models[False](ps, ref_s, speed)
|
69 |
else:
|
70 |
raise gr.Error(e)
|
71 |
+
yield 24000, audio.numpy()
|
72 |
+
|
73 |
+
random_texts = {}
|
74 |
+
for lang in ['en']:
|
75 |
+
with open(f'{lang}.txt', 'r') as r:
|
76 |
+
random_texts[lang] = [line.strip() for line in r]
|
77 |
+
|
78 |
+
def get_random_text(voice):
|
79 |
+
lang = dict(a='en', b='en')[voice[0]]
|
80 |
+
return random.choice(random_texts[lang])
|
81 |
|
|
|
82 |
CHOICES = {
|
83 |
+
'🇺🇸 🚺 Heart ❤️': 'af_heart',
|
84 |
+
'🇺🇸 🚺 Bella 🔥': 'af_bella',
|
85 |
+
'🇺🇸 🚺 Nicole 🎧': 'af_nicole',
|
86 |
+
'🇺🇸 🚺 Aoede': 'af_aoede',
|
87 |
+
'🇺🇸 🚺 Kore': 'af_kore',
|
88 |
+
'🇺🇸 🚺 Sarah': 'af_sarah',
|
89 |
+
'🇺🇸 🚺 Nova': 'af_nova',
|
90 |
+
'🇺🇸 🚺 Sky': 'af_sky',
|
91 |
+
'🇺🇸 🚺 Alloy': 'af_alloy',
|
92 |
+
'🇺🇸 🚺 Jessica': 'af_jessica',
|
93 |
+
'🇺🇸 🚺 River': 'af_river',
|
94 |
+
|
95 |
+
'🇺🇸 🚹 Michael': 'am_michael',
|
96 |
+
'🇺🇸 🚹 Fenrir': 'am_fenrir',
|
97 |
+
'🇺🇸 🚹 Puck': 'am_puck',
|
98 |
+
'🇺🇸 🚹 Echo': 'am_echo',
|
99 |
+
'🇺🇸 🚹 Eric': 'am_eric',
|
100 |
+
'🇺🇸 🚹 Liam': 'am_liam',
|
101 |
+
'🇺🇸 🚹 Onyx': 'am_onyx',
|
102 |
+
'🇺🇸 🚹 Santa': 'am_santa',
|
103 |
+
'🇺🇸 🚹 Adam': 'am_adam',
|
104 |
+
|
105 |
+
'🇬🇧 🚺 Emma': 'bf_emma',
|
106 |
+
'🇬🇧 🚺 Isabella': 'bf_isabella',
|
107 |
+
'🇬🇧 🚺 Alice': 'bf_alice',
|
108 |
+
'🇬🇧 🚺 Lily': 'bf_lily',
|
109 |
+
|
110 |
+
'🇬🇧 🚹 George': 'bm_george',
|
111 |
+
'🇬🇧 🚹 Fable': 'bm_fable',
|
112 |
+
'🇬🇧 🚹 Lewis': 'bm_lewis',
|
113 |
+
'🇬🇧 🚹 Daniel': 'bm_daniel',
|
114 |
+
|
115 |
+
'🇪🇸 🚺 Dora': 'ef_dora',
|
116 |
+
|
117 |
+
'🇪🇸 🚹 Alex': 'em_alex',
|
118 |
+
'🇪🇸 🚹 Santa': 'em_santa',
|
119 |
+
|
120 |
+
'🇫🇷 🚺 Siwis': 'ff_siwis',
|
121 |
+
|
122 |
+
'🇮🇳 🚹 Alpha': 'hf_alpha',
|
123 |
+
'🇮🇳 🚹 Beta': 'hf_beta',
|
124 |
+
|
125 |
+
'🇮🇳 🚹 Omega': 'hm_omega',
|
126 |
+
'🇮🇳 🚹 Psi': 'hm_psi',
|
127 |
+
|
128 |
+
'🇮🇹 🚺 Sara': 'if_sara',
|
129 |
+
|
130 |
+
'🇮🇹 🚺 Nicola': 'im_nicola',
|
131 |
+
|
132 |
+
'🇯🇵 🚹 Alpha': 'jf_alpha',
|
133 |
+
'🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
|
134 |
+
'🇯🇵 🚹 Nezumi': 'jf_nezumi',
|
135 |
+
'🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
|
136 |
+
|
137 |
+
'🇯🇵 🚹 Kumo': 'jm_kumo',
|
138 |
+
|
139 |
+
'🇧🇷 🚺 Dora': 'pf_dora',
|
140 |
+
|
141 |
+
'🇧🇷 🚹 Alex': 'pm_alex',
|
142 |
+
'🇧🇷 🚹 Santa': 'pm_santa',
|
143 |
+
|
144 |
+
'🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
|
145 |
+
'🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
|
146 |
+
'🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
|
147 |
+
'🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',
|
148 |
+
|
149 |
+
'🇨🇳 🚹 Yunjian': 'zm_yunjian',
|
150 |
+
'🇨🇳 🚹 Yunxi': 'zm_yunxi',
|
151 |
+
'🇨🇳 🚹 Yunxia': 'zm_yunxia',
|
152 |
+
'🇨🇳 🚹 Yunyang': 'zm_yunyang',
|
153 |
}
|
154 |
+
for v in CHOICES.values():
|
155 |
+
pipelines[v[0]].load_voice(v)
|
156 |
+
|
157 |
+
with gr.Blocks() as generate_tab:
|
158 |
+
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
|
159 |
+
generate_btn = gr.Button('Generate', variant='primary')
|
160 |
+
with gr.Accordion('Output Tokens', open=True):
|
161 |
+
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
|
162 |
+
tokenize_btn = gr.Button('Tokenize', variant='secondary')
|
163 |
+
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
164 |
+
|
165 |
+
BANNER_TEXT = '''
|
166 |
+
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
|
167 |
+
As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
|
168 |
+
This demo only showcases English, but you can directly use the model to access other languages.
|
169 |
+
'''
|
170 |
+
|
171 |
+
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
|
172 |
+
API_NAME = None if API_OPEN else False
|
173 |
with gr.Blocks() as app:
|
174 |
+
with gr.Row():
|
175 |
+
gr.Markdown(BANNER_TEXT, container=True)
|
176 |
with gr.Row():
|
177 |
with gr.Column():
|
178 |
+
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
|
179 |
+
with gr.Row():
|
180 |
+
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
|
181 |
+
use_gpu = gr.Dropdown(
|
182 |
+
[('ZeroGPU 🚀', True), ('CPU 🐌', False)],
|
183 |
+
value=CUDA_AVAILABLE,
|
184 |
+
label='Hardware',
|
185 |
+
info='GPU is usually faster, but has a usage quota',
|
186 |
+
interactive=CUDA_AVAILABLE
|
187 |
+
)
|
188 |
+
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
|
189 |
+
random_btn = gr.Button('Random Text', variant='secondary')
|
190 |
with gr.Column():
|
191 |
+
gr.TabbedInterface([generate_tab], ['Generate'])
|
192 |
+
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME)
|
193 |
+
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
|
194 |
+
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
|
195 |
+
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
|
196 |
+
|
197 |
+
if __name__ == '__main__':
|
198 |
+
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|