Update app.py
Browse files
app.py
CHANGED
@@ -6,25 +6,23 @@ import random
|
|
6 |
import torch
|
7 |
import openai
|
8 |
|
9 |
-
# Check if running in a duplicate space
|
10 |
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
|
11 |
CHAR_LIMIT = None if IS_DUPLICATE else 5000
|
12 |
|
13 |
-
# Check if CUDA is available
|
14 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
15 |
-
|
16 |
-
# Load the models (GPU and CPU versions)
|
17 |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
18 |
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
|
19 |
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
20 |
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
|
21 |
|
22 |
-
#
|
|
|
|
|
|
|
23 |
@spaces.GPU(duration=10)
|
24 |
def forward_gpu(ps, ref_s, speed):
|
25 |
return models[True](ps, ref_s, speed)
|
26 |
|
27 |
-
# Function to generate first output
|
28 |
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
29 |
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
30 |
pipeline = pipelines[voice[0]]
|
@@ -47,17 +45,10 @@ def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
|
47 |
return (24000, audio.numpy()), ps
|
48 |
return None, ''
|
49 |
|
50 |
-
# Function to tokenize first
|
51 |
def tokenize_first(text, voice='af_heart'):
|
52 |
words = text.split() # This splits the text into words based on spaces
|
53 |
return words # Return a list of words
|
54 |
|
55 |
-
# Function to get random text for the "Random Text" button
|
56 |
-
random_texts = {}
|
57 |
-
for lang in ['en']:
|
58 |
-
with open(f'{lang}.txt', 'r') as r:
|
59 |
-
random_texts[lang] = [line.strip() for line in r]
|
60 |
-
|
61 |
def get_random_text(voice):
|
62 |
lang = dict(a='en', b='en')[voice[0]]
|
63 |
return random.choice(random_texts[lang])
|
@@ -81,7 +72,12 @@ def translate_and_generate(text, voice, speed):
|
|
81 |
audio, tokens = generate_first(translated_text, voice, speed, use_gpu=CUDA_AVAILABLE)
|
82 |
return audio, tokens, translated_text
|
83 |
|
84 |
-
#
|
|
|
|
|
|
|
|
|
|
|
85 |
CHOICES = {
|
86 |
'🇺🇸 🚺 Heart ❤️': 'af_heart',
|
87 |
'🇺🇸 🚺 Bella 🔥': 'af_bella',
|
@@ -94,7 +90,7 @@ CHOICES = {
|
|
94 |
'🇺🇸 🚺 Alloy': 'af_alloy',
|
95 |
'🇺🇸 🚺 Jessica': 'af_jessica',
|
96 |
'🇺🇸 🚺 River': 'af_river',
|
97 |
-
|
98 |
'🇺🇸 🚹 Michael': 'am_michael',
|
99 |
'🇺🇸 🚹 Fenrir': 'am_fenrir',
|
100 |
'🇺🇸 🚹 Puck': 'am_puck',
|
@@ -104,62 +100,62 @@ CHOICES = {
|
|
104 |
'🇺🇸 🚹 Onyx': 'am_onyx',
|
105 |
'🇺🇸 🚹 Santa': 'am_santa',
|
106 |
'🇺🇸 🚹 Adam': 'am_adam',
|
107 |
-
|
108 |
'🇬🇧 🚺 Emma': 'bf_emma',
|
109 |
'🇬🇧 🚺 Isabella': 'bf_isabella',
|
110 |
'🇬🇧 🚺 Alice': 'bf_alice',
|
111 |
'🇬🇧 🚺 Lily': 'bf_lily',
|
112 |
-
|
113 |
'🇬🇧 🚹 George': 'bm_george',
|
114 |
'🇬🇧 🚹 Fable': 'bm_fable',
|
115 |
'🇬🇧 🚹 Lewis': 'bm_lewis',
|
116 |
'🇬🇧 🚹 Daniel': 'bm_daniel',
|
117 |
-
|
118 |
'🇪🇸 🚺 Dora': 'ef_dora',
|
119 |
-
|
120 |
'🇪🇸 🚹 Alex': 'em_alex',
|
121 |
'🇪🇸 🚹 Santa': 'em_santa',
|
122 |
-
|
123 |
'🇫🇷 🚺 Siwis': 'ff_siwis',
|
124 |
-
|
125 |
'🇮🇳 🚹 Alpha': 'hf_alpha',
|
126 |
'🇮🇳 🚹 Beta': 'hf_beta',
|
127 |
-
|
128 |
'🇮🇳 🚹 Omega': 'hm_omega',
|
129 |
'🇮🇳 🚹 Psi': 'hm_psi',
|
130 |
-
|
131 |
'🇮🇹 🚺 Sara': 'if_sara',
|
132 |
-
|
133 |
'🇮🇹 🚺 Nicola': 'im_nicola',
|
134 |
-
|
135 |
'🇯🇵 🚹 Alpha': 'jf_alpha',
|
136 |
'🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
|
137 |
'🇯🇵 🚹 Nezumi': 'jf_nezumi',
|
138 |
'🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
|
139 |
-
|
140 |
'🇯🇵 🚹 Kumo': 'jm_kumo',
|
141 |
-
|
142 |
'🇧🇷 🚺 Dora': 'pf_dora',
|
143 |
-
|
144 |
'🇧🇷 🚹 Alex': 'pm_alex',
|
145 |
'🇧🇷 🚹 Santa': 'pm_santa',
|
146 |
-
|
147 |
'🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
|
148 |
'🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
|
149 |
'🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
|
150 |
'🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',
|
151 |
-
|
152 |
'🇨🇳 🚹 Yunjian': 'zm_yunjian',
|
153 |
'🇨🇳 🚹 Yunxi': 'zm_yunxi',
|
154 |
'🇨🇳 🚹 Yunxia': 'zm_yunxia',
|
155 |
'🇨🇳 🚹 Yunyang': 'zm_yunyang',
|
|
|
156 |
}
|
157 |
|
158 |
-
# Load voices
|
159 |
for v in CHOICES.values():
|
160 |
pipelines[v[0]].load_voice(v)
|
161 |
|
162 |
-
#
|
163 |
with gr.Blocks() as generate_tab:
|
164 |
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
|
165 |
generate_btn = gr.Button('Generate', variant='primary')
|
@@ -168,21 +164,22 @@ with gr.Blocks() as generate_tab:
|
|
168 |
tokenize_btn = gr.Button('Tokenize', variant='secondary')
|
169 |
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
170 |
|
171 |
-
# Translator Tab
|
172 |
with gr.Blocks() as translator_tab:
|
173 |
trans_out_audio = gr.Audio(label='Translated Audio Output', interactive=False, streaming=False, autoplay=True)
|
174 |
trans_out_tokens = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the translated audio')
|
175 |
translate_btn = gr.Button('Translate & Generate Audio', variant='primary')
|
176 |
|
177 |
-
translate_btn.click(fn=translate_and_generate, inputs=[text, voice, speed], outputs=[trans_out_audio, trans_out_tokens, text], api_name=
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
# Main Interface
|
180 |
with gr.Blocks() as app:
|
181 |
with gr.Row():
|
182 |
-
gr.Markdown(
|
183 |
-
As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
|
184 |
-
This demo only showcases English, but you can directly use the model to access other languages.''', container=True)
|
185 |
-
|
186 |
with gr.Row():
|
187 |
with gr.Column():
|
188 |
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
|
@@ -200,10 +197,10 @@ with gr.Blocks() as app:
|
|
200 |
with gr.Column():
|
201 |
gr.TabbedInterface([generate_tab, translator_tab], ['Generate', 'Translator'])
|
202 |
|
203 |
-
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text])
|
204 |
-
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps])
|
205 |
-
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps])
|
206 |
-
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio])
|
207 |
|
208 |
if __name__ == '__main__':
|
209 |
-
app.queue().launch(show_api=True)
|
|
|
6 |
import torch
|
7 |
import openai
|
8 |
|
|
|
9 |
IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
|
10 |
CHAR_LIMIT = None if IS_DUPLICATE else 5000
|
11 |
|
|
|
12 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
|
|
|
|
13 |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
14 |
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abefhijpz'}
|
15 |
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
16 |
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
|
17 |
|
18 |
+
# Check API status
|
19 |
+
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
|
20 |
+
API_NAME = None if API_OPEN else False
|
21 |
+
|
22 |
@spaces.GPU(duration=10)
|
23 |
def forward_gpu(ps, ref_s, speed):
|
24 |
return models[True](ps, ref_s, speed)
|
25 |
|
|
|
26 |
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
27 |
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
28 |
pipeline = pipelines[voice[0]]
|
|
|
45 |
return (24000, audio.numpy()), ps
|
46 |
return None, ''
|
47 |
|
|
|
48 |
def tokenize_first(text, voice='af_heart'):
|
49 |
words = text.split() # This splits the text into words based on spaces
|
50 |
return words # Return a list of words
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def get_random_text(voice):
|
53 |
lang = dict(a='en', b='en')[voice[0]]
|
54 |
return random.choice(random_texts[lang])
|
|
|
72 |
audio, tokens = generate_first(translated_text, voice, speed, use_gpu=CUDA_AVAILABLE)
|
73 |
return audio, tokens, translated_text
|
74 |
|
75 |
+
# Load random text for "Random Text" button
|
76 |
+
random_texts = {}
|
77 |
+
for lang in ['en']:
|
78 |
+
with open(f'{lang}.txt', 'r') as r:
|
79 |
+
random_texts[lang] = [line.strip() for line in r]
|
80 |
+
|
81 |
CHOICES = {
|
82 |
'🇺🇸 🚺 Heart ❤️': 'af_heart',
|
83 |
'🇺🇸 🚺 Bella 🔥': 'af_bella',
|
|
|
90 |
'🇺🇸 🚺 Alloy': 'af_alloy',
|
91 |
'🇺🇸 🚺 Jessica': 'af_jessica',
|
92 |
'🇺🇸 🚺 River': 'af_river',
|
93 |
+
|
94 |
'🇺🇸 🚹 Michael': 'am_michael',
|
95 |
'🇺🇸 🚹 Fenrir': 'am_fenrir',
|
96 |
'🇺🇸 🚹 Puck': 'am_puck',
|
|
|
100 |
'🇺🇸 🚹 Onyx': 'am_onyx',
|
101 |
'🇺🇸 🚹 Santa': 'am_santa',
|
102 |
'🇺🇸 🚹 Adam': 'am_adam',
|
103 |
+
|
104 |
'🇬🇧 🚺 Emma': 'bf_emma',
|
105 |
'🇬🇧 🚺 Isabella': 'bf_isabella',
|
106 |
'🇬🇧 🚺 Alice': 'bf_alice',
|
107 |
'🇬🇧 🚺 Lily': 'bf_lily',
|
108 |
+
|
109 |
'🇬🇧 🚹 George': 'bm_george',
|
110 |
'🇬🇧 🚹 Fable': 'bm_fable',
|
111 |
'🇬🇧 🚹 Lewis': 'bm_lewis',
|
112 |
'🇬🇧 🚹 Daniel': 'bm_daniel',
|
113 |
+
|
114 |
'🇪🇸 🚺 Dora': 'ef_dora',
|
115 |
+
|
116 |
'🇪🇸 🚹 Alex': 'em_alex',
|
117 |
'🇪🇸 🚹 Santa': 'em_santa',
|
118 |
+
|
119 |
'🇫🇷 🚺 Siwis': 'ff_siwis',
|
120 |
+
|
121 |
'🇮🇳 🚹 Alpha': 'hf_alpha',
|
122 |
'🇮🇳 🚹 Beta': 'hf_beta',
|
123 |
+
|
124 |
'🇮🇳 🚹 Omega': 'hm_omega',
|
125 |
'🇮🇳 🚹 Psi': 'hm_psi',
|
126 |
+
|
127 |
'🇮🇹 🚺 Sara': 'if_sara',
|
128 |
+
|
129 |
'🇮🇹 🚺 Nicola': 'im_nicola',
|
130 |
+
|
131 |
'🇯🇵 🚹 Alpha': 'jf_alpha',
|
132 |
'🇯🇵 🚹 Gongitsune': 'jf_gongitsune',
|
133 |
'🇯🇵 🚹 Nezumi': 'jf_nezumi',
|
134 |
'🇯🇵 🚹 Tebukuro': 'jf_tebukuro',
|
135 |
+
|
136 |
'🇯🇵 🚹 Kumo': 'jm_kumo',
|
137 |
+
|
138 |
'🇧🇷 🚺 Dora': 'pf_dora',
|
139 |
+
|
140 |
'🇧🇷 🚹 Alex': 'pm_alex',
|
141 |
'🇧🇷 🚹 Santa': 'pm_santa',
|
142 |
+
|
143 |
'🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
|
144 |
'🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
|
145 |
'🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
|
146 |
'🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',
|
147 |
+
|
148 |
'🇨🇳 🚹 Yunjian': 'zm_yunjian',
|
149 |
'🇨🇳 🚹 Yunxi': 'zm_yunxi',
|
150 |
'🇨🇳 🚹 Yunxia': 'zm_yunxia',
|
151 |
'🇨🇳 🚹 Yunyang': 'zm_yunyang',
|
152 |
+
# (All the voice options here... same as before)
|
153 |
}
|
154 |
|
|
|
155 |
for v in CHOICES.values():
|
156 |
pipelines[v[0]].load_voice(v)
|
157 |
|
158 |
+
# Tabs for generation and translation
|
159 |
with gr.Blocks() as generate_tab:
|
160 |
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
|
161 |
generate_btn = gr.Button('Generate', variant='primary')
|
|
|
164 |
tokenize_btn = gr.Button('Tokenize', variant='secondary')
|
165 |
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
166 |
|
|
|
167 |
with gr.Blocks() as translator_tab:
|
168 |
trans_out_audio = gr.Audio(label='Translated Audio Output', interactive=False, streaming=False, autoplay=True)
|
169 |
trans_out_tokens = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the translated audio')
|
170 |
translate_btn = gr.Button('Translate & Generate Audio', variant='primary')
|
171 |
|
172 |
+
translate_btn.click(fn=translate_and_generate, inputs=[text, voice, speed], outputs=[trans_out_audio, trans_out_tokens, text], api_name=API_NAME)
|
173 |
+
|
174 |
+
BANNER_TEXT = '''
|
175 |
+
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
|
176 |
+
As of January 31st, 2025, Kokoro was the most-liked [**TTS model**](https://huggingface.co/models?pipeline_tag=text-to-speech&sort=likes) and the most-liked [**TTS space**](https://huggingface.co/spaces?sort=likes&search=tts) on Hugging Face.
|
177 |
+
This demo only showcases English, but you can directly use the model to access other languages.
|
178 |
+
'''
|
179 |
|
|
|
180 |
with gr.Blocks() as app:
|
181 |
with gr.Row():
|
182 |
+
gr.Markdown(BANNER_TEXT, container=True)
|
|
|
|
|
|
|
183 |
with gr.Row():
|
184 |
with gr.Column():
|
185 |
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
|
|
|
197 |
with gr.Column():
|
198 |
gr.TabbedInterface([generate_tab, translator_tab], ['Generate', 'Translator'])
|
199 |
|
200 |
+
random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME)
|
201 |
+
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
|
202 |
+
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
|
203 |
+
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
|
204 |
|
205 |
if __name__ == '__main__':
|
206 |
+
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)
|