shukdevdatta123's picture
Update app.py
81e2902 verified
raw
history blame
6.82 kB
import gradio as gr
import openai
import fitz # PyMuPDF for PDF processing
import base64
# Store API Key
api_key = ""
# Function to update API Key
def set_api_key(key):
global api_key
api_key = key
return "API Key Set Successfully!"
# Function to interact with OpenAI API using conversation history
def query_openai(messages, temperature, top_p, max_output_tokens):
if not api_key:
return ["Please enter your OpenAI API key first."], messages
try:
openai.api_key = api_key # Set API Key dynamically
# Ensure valid values for OpenAI parameters
temperature = float(temperature) if temperature else 1.0
top_p = float(top_p) if top_p else 1.0
max_output_tokens = int(max_output_tokens) if max_output_tokens else 2048
response = openai.ChatCompletion.create(
model="gpt-4.5-preview",
messages=messages,
temperature=temperature,
top_p=top_p,
max_tokens=max_output_tokens
)
bot_response = response["choices"][0]["message"]["content"]
messages.append({"role": "assistant", "content": bot_response}) # Store bot response in history
return messages, messages # Return updated conversation
except Exception as e:
return [f"Error: {str(e)}"], messages
# Image URL Chat
def image_url_chat(image_url, text_query, messages, temperature, top_p, max_output_tokens):
if not image_url or not text_query:
return ["Please provide an image URL and a query."], messages
messages.append({"role": "user", "content": [
{"type": "image_url", "image_url": {"url": image_url}},
{"type": "text", "text": text_query}
]})
return query_openai(messages, temperature, top_p, max_output_tokens)
# Text Chat
def text_chat(text_query, messages, temperature, top_p, max_output_tokens):
if not text_query:
return ["Please enter a query."], messages
messages.append({"role": "user", "content": text_query})
return query_openai(messages, temperature, top_p, max_output_tokens)
# Image Chat
def image_chat(image_file, text_query, messages, temperature, top_p, max_output_tokens):
if image_file is None or not text_query:
return ["Please upload an image and provide a query."], messages
# Encode image as base64
with open(image_file, "rb") as img:
base64_image = base64.b64encode(img.read()).decode("utf-8")
image_data = f"data:image/jpeg;base64,{base64_image}"
messages.append({"role": "user", "content": [
{"type": "image_url", "image_url": {"url": image_data}},
{"type": "text", "text": text_query}
]})
return query_openai(messages, temperature, top_p, max_output_tokens)
# PDF Chat
def pdf_chat(pdf_file, text_query, messages, temperature, top_p, max_output_tokens):
if pdf_file is None or not text_query:
return ["Please upload a PDF and provide a query."], messages
doc = fitz.open(pdf_file)
text = "\n".join([page.get_text("text") for page in doc][:5]) # Extract text from first 5 pages
messages.append({"role": "user", "content": [
{"type": "text", "text": text},
{"type": "text", "text": text_query}
]})
return query_openai(messages, temperature, top_p, max_output_tokens)
# Function to clear chat history and reset parameters
def clear_chat():
return [], [], [], [], "", "", [], "", [], None, "", [], None, "", 1.0, 1.0, 2048
# Gradio UI Layout
with gr.Blocks() as demo:
gr.Markdown("## GPT-4.5 Preview Conversational Chatbot")
# API Key Input
with gr.Row():
api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password")
api_key_button = gr.Button("Set API Key")
api_key_output = gr.Textbox(label="API Key Status", interactive=False)
with gr.Row():
temperature = gr.Slider(0, 2, value=1.0, step=0.1, label="Temperature")
top_p = gr.Slider(0, 1, value=1.0, step=0.1, label="Top-P")
max_output_tokens = gr.Slider(0, 16384, value=2048, step=512, label="Max Output Tokens")
with gr.Tabs():
with gr.Tab("Image URL Chat"):
image_url = gr.Textbox(label="Enter Image URL")
image_query = gr.Textbox(label="Ask about the Image")
image_url_output = gr.Chatbot(label="Conversation History", elem_id="chatbot1")
image_url_button = gr.Button("Ask")
with gr.Tab("Text Chat"):
text_query = gr.Textbox(label="Enter your query")
text_output = gr.Chatbot(label="Conversation History", elem_id="chatbot2")
text_button = gr.Button("Ask")
with gr.Tab("Image Chat"):
image_upload = gr.File(label="Upload an Image", type="filepath")
image_text_query = gr.Textbox(label="Ask about the uploaded image")
image_output = gr.Chatbot(label="Conversation History", elem_id="chatbot3")
image_button = gr.Button("Ask")
with gr.Tab("PDF Chat"):
pdf_upload = gr.File(label="Upload a PDF", type="filepath")
pdf_text_query = gr.Textbox(label="Ask about the uploaded PDF")
pdf_output = gr.Chatbot(label="Conversation History", elem_id="chatbot4")
pdf_button = gr.Button("Ask")
# Clear chat button
clear_button = gr.Button("Clear Chat")
# Chat Histories
image_url_chat_history = gr.State([])
text_chat_history = gr.State([])
image_chat_history = gr.State([])
pdf_chat_history = gr.State([])
# Button Click Actions
api_key_button.click(set_api_key, inputs=[api_key_input], outputs=[api_key_output])
image_url_button.click(image_url_chat, [image_url, image_query, image_url_chat_history, temperature, top_p, max_output_tokens], [image_url_output, image_url_chat_history])
text_button.click(text_chat, [text_query, text_chat_history, temperature, top_p, max_output_tokens], [text_output, text_chat_history])
image_button.click(image_chat, [image_upload, image_text_query, image_chat_history, temperature, top_p, max_output_tokens], [image_output, image_chat_history])
pdf_button.click(pdf_chat, [pdf_upload, pdf_text_query, pdf_chat_history, temperature, top_p, max_output_tokens], [pdf_output, pdf_chat_history])
# Fix: Clear button resets all necessary fields correctly
clear_button.click(
clear_chat,
outputs=[
image_url_chat_history, text_chat_history, image_chat_history, pdf_chat_history,
image_url, image_query, image_url_output,
text_query, text_output,
image_upload, image_text_query, image_output,
pdf_upload, pdf_text_query, pdf_output,
temperature, top_p, max_output_tokens
]
)
# Launch Gradio App
if __name__ == "__main__":
demo.launch()