Spaces:
Paused
Paused
| import gradio as gr | |
| import os | |
| import re | |
| from groq import Groq | |
| import pandas as pd | |
| import matplotlib.pyplot as plt | |
| import io | |
| import base64 | |
| from datetime import datetime, timedelta | |
| import json | |
| def validate_api_key(api_key): | |
| """Validate if the API key has the correct format.""" | |
| # Basic format check for Groq API keys (they typically start with 'gsk_') | |
| if not api_key.strip(): | |
| return False, "API key cannot be empty" | |
| if not api_key.startswith("gsk_"): | |
| return False, "Invalid API key format. Groq API keys typically start with 'gsk_'" | |
| return True, "API key looks valid" | |
| def test_api_connection(api_key): | |
| """Test the API connection with a minimal request.""" | |
| try: | |
| client = Groq(api_key=api_key) | |
| # Making a minimal API call to test the connection | |
| client.chat.completions.create( | |
| model="llama3-70b-8192", | |
| messages=[{"role": "user", "content": "test"}], | |
| max_tokens=5 | |
| ) | |
| return True, "API connection successful" | |
| except Exception as e: | |
| # Handle all exceptions since Groq might not expose specific error types | |
| if "authentication" in str(e).lower() or "api key" in str(e).lower(): | |
| return False, "Authentication failed: Invalid API key" | |
| else: | |
| return False, f"Error connecting to Groq API: {str(e)}" | |
| # Ensure analytics directory exists | |
| os.makedirs("analytics", exist_ok=True) | |
| def log_chat_interaction(model, tokens_used, response_time, user_message_length): | |
| """Log chat interactions for analytics""" | |
| timestamp = datetime.now().isoformat() | |
| log_file = "analytics/chat_log.json" | |
| log_entry = { | |
| "timestamp": timestamp, | |
| "model": model, | |
| "tokens_used": tokens_used, | |
| "response_time_sec": response_time, | |
| "user_message_length": user_message_length | |
| } | |
| # Append to existing log or create new file | |
| if os.path.exists(log_file): | |
| try: | |
| with open(log_file, "r") as f: | |
| logs = json.load(f) | |
| except: | |
| logs = [] | |
| else: | |
| logs = [] | |
| logs.append(log_entry) | |
| with open(log_file, "w") as f: | |
| json.dump(logs, f, indent=2) | |
| def get_template_prompt(template_name): | |
| """Get system prompt for a given template name""" | |
| templates = { | |
| "General Assistant": "You are a helpful, harmless, and honest AI assistant.", | |
| "Code Helper": "You are a programming assistant. Provide detailed code explanations and examples.", | |
| "Creative Writer": "You are a creative writing assistant. Generate engaging and imaginative content.", | |
| "Technical Expert": "You are a technical expert. Provide accurate, detailed technical information.", | |
| "Data Analyst": "You are a data analysis assistant. Help interpret and analyze data effectively." | |
| } | |
| return templates.get(template_name, "") | |
| def enhanced_chat_with_groq(api_key, model, user_message, temperature, max_tokens, top_p, chat_history, template_name=""): | |
| """Enhanced chat function with analytics logging""" | |
| start_time = datetime.now() | |
| # Get system prompt if template is provided | |
| system_prompt = get_template_prompt(template_name) if template_name else "" | |
| # Validate and process as before | |
| is_valid, message = validate_api_key(api_key) | |
| if not is_valid: | |
| return chat_history + [[user_message, f"Error: {message}"]] | |
| connection_valid, connection_message = test_api_connection(api_key) | |
| if not connection_valid: | |
| return chat_history + [[user_message, f"Error: {connection_message}"]] | |
| try: | |
| # Format history | |
| messages = [] | |
| if system_prompt: | |
| messages.append({"role": "system", "content": system_prompt}) | |
| for human, assistant in chat_history: | |
| messages.append({"role": "user", "content": human}) | |
| messages.append({"role": "assistant", "content": assistant}) | |
| messages.append({"role": "user", "content": user_message}) | |
| # Make API call | |
| client = Groq(api_key=api_key) | |
| response = client.chat.completions.create( | |
| model=model, | |
| messages=messages, | |
| temperature=temperature, | |
| max_tokens=max_tokens, | |
| top_p=top_p | |
| ) | |
| # Calculate metrics | |
| end_time = datetime.now() | |
| response_time = (end_time - start_time).total_seconds() | |
| tokens_used = response.usage.total_tokens | |
| # Log the interaction | |
| log_chat_interaction( | |
| model=model, | |
| tokens_used=tokens_used, | |
| response_time=response_time, | |
| user_message_length=len(user_message) | |
| ) | |
| # Extract response | |
| assistant_response = response.choices[0].message.content | |
| return chat_history + [[user_message, assistant_response]] | |
| except Exception as e: | |
| error_message = f"Error: {str(e)}" | |
| return chat_history + [[user_message, error_message]] | |
| def clear_conversation(): | |
| """Clear the conversation history.""" | |
| return [] | |
| def plt_to_html(fig): | |
| """Convert matplotlib figure to HTML img tag""" | |
| buf = io.BytesIO() | |
| fig.savefig(buf, format="png", bbox_inches="tight") | |
| buf.seek(0) | |
| img_str = base64.b64encode(buf.read()).decode("utf-8") | |
| plt.close(fig) | |
| return f'<img src="data:image/png;base64,{img_str}" alt="Chart">' | |
| def generate_analytics(): | |
| """Generate analytics from the chat log""" | |
| log_file = "analytics/chat_log.json" | |
| if not os.path.exists(log_file): | |
| return "No analytics data available yet.", None, None, None, [] | |
| try: | |
| with open(log_file, "r") as f: | |
| logs = json.load(f) | |
| if not logs: | |
| return "No analytics data available yet.", None, None, None, [] | |
| # Convert to DataFrame | |
| df = pd.DataFrame(logs) | |
| df["timestamp"] = pd.to_datetime(df["timestamp"]) | |
| # Generate usage by model chart | |
| model_usage = df.groupby("model").agg({ | |
| "tokens_used": "sum", | |
| "timestamp": "count" | |
| }).reset_index() | |
| model_usage.columns = ["model", "total_tokens", "request_count"] | |
| fig1 = plt.figure(figsize=(10, 6)) | |
| plt.bar(model_usage["model"], model_usage["total_tokens"]) | |
| plt.title("Token Usage by Model") | |
| plt.xlabel("Model") | |
| plt.ylabel("Total Tokens Used") | |
| plt.xticks(rotation=45) | |
| plt.tight_layout() | |
| model_usage_img = plt_to_html(fig1) | |
| # Generate usage over time chart | |
| df["date"] = df["timestamp"].dt.date | |
| daily_usage = df.groupby("date").agg({ | |
| "tokens_used": "sum" | |
| }).reset_index() | |
| fig2 = plt.figure(figsize=(10, 6)) | |
| plt.plot(daily_usage["date"], daily_usage["tokens_used"], marker="o") | |
| plt.title("Daily Token Usage") | |
| plt.xlabel("Date") | |
| plt.ylabel("Tokens Used") | |
| plt.grid(True) | |
| plt.tight_layout() | |
| daily_usage_img = plt_to_html(fig2) | |
| # Generate response time chart | |
| model_response_time = df.groupby("model").agg({ | |
| "response_time_sec": "mean" | |
| }).reset_index() | |
| fig3 = plt.figure(figsize=(10, 6)) | |
| plt.bar(model_response_time["model"], model_response_time["response_time_sec"]) | |
| plt.title("Average Response Time by Model") | |
| plt.xlabel("Model") | |
| plt.ylabel("Response Time (seconds)") | |
| plt.xticks(rotation=45) | |
| plt.tight_layout() | |
| response_time_img = plt_to_html(fig3) | |
| # Summary statistics | |
| total_tokens = df["tokens_used"].sum() | |
| total_requests = len(df) | |
| avg_response_time = df["response_time_sec"].mean() | |
| # Handling the case where there might not be enough data | |
| if not model_usage.empty: | |
| most_used_model = model_usage.iloc[model_usage["request_count"].argmax()]["model"] | |
| else: | |
| most_used_model = "N/A" | |
| summary = f""" | |
| ## Analytics Summary | |
| - **Total API Requests**: {total_requests} | |
| - **Total Tokens Used**: {total_tokens:,} | |
| - **Average Response Time**: {avg_response_time:.2f} seconds | |
| - **Most Used Model**: {most_used_model} | |
| - **Date Range**: {df["timestamp"].min().date()} to {df["timestamp"].max().date()} | |
| """ | |
| return summary, model_usage_img, daily_usage_img, response_time_img, df.to_dict("records") | |
| except Exception as e: | |
| error_message = f"Error generating analytics: {str(e)}" | |
| return error_message, None, None, None, [] | |
| # Define available models | |
| models = [ | |
| "llama3-70b-8192", | |
| "llama3-8b-8192", | |
| "mistral-saba-24b", | |
| "gemma2-9b-it", | |
| "allam-2-7b" | |
| ] | |
| # Define templates | |
| templates = ["General Assistant", "Code Helper", "Creative Writer", "Technical Expert", "Data Analyst"] | |
| # Create the Gradio interface | |
| with gr.Blocks(title="Groq AI Chat Playground") as app: | |
| gr.Markdown("# Groq AI Chat Playground") | |
| # Create tabs for Chat and Analytics | |
| with gr.Tabs(): | |
| with gr.Tab("Chat"): | |
| # New model information accordion | |
| with gr.Accordion("ℹ️ Model Information - Learn about available models", open=False): | |
| gr.Markdown(""" | |
| ### Available Models and Use Cases | |
| **llama3-70b-8192** | |
| - Meta's most powerful language model | |
| - 70 billion parameters with 8192 token context window | |
| - Best for: Complex reasoning, sophisticated content generation, creative writing, and detailed analysis | |
| - Optimal for users needing the highest quality AI responses | |
| **llama3-8b-8192** | |
| - Lighter version of Llama 3 | |
| - 8 billion parameters with 8192 token context window | |
| - Best for: Faster responses, everyday tasks, simpler queries | |
| - Good balance between performance and speed | |
| **mistral-saba-24b** | |
| - Mistral AI's advanced model | |
| - 24 billion parameters | |
| - Best for: High-quality reasoning, code generation, and structured outputs | |
| - Excellent for technical and professional use cases | |
| **gemma2-9b-it** | |
| - Google's instruction-tuned model | |
| - 9 billion parameters | |
| - Best for: Following specific instructions, educational content, and general knowledge queries | |
| - Well-rounded performance for various tasks | |
| **allam-2-7b** | |
| - Specialized model from Aleph Alpha | |
| - 7 billion parameters | |
| - Best for: Multilingual support, concise responses, and straightforward Q&A | |
| - Good for international users and simpler applications | |
| *Note: Larger models generally provide higher quality responses but may take slightly longer to generate.* | |
| """) | |
| gr.Markdown("Enter your Groq API key to start chatting with AI models.") | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| api_key_input = gr.Textbox( | |
| label="Groq API Key", | |
| placeholder="Enter your Groq API key (starts with gsk_)", | |
| type="password" | |
| ) | |
| with gr.Column(scale=1): | |
| test_button = gr.Button("Test API Connection") | |
| api_status = gr.Textbox(label="API Status", interactive=False) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| model_dropdown = gr.Dropdown( | |
| choices=models, | |
| label="Select Model", | |
| value="llama3-70b-8192" | |
| ) | |
| with gr.Column(scale=1): | |
| template_dropdown = gr.Dropdown( | |
| choices=templates, | |
| label="Select Template", | |
| value="General Assistant" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Accordion("Advanced Settings", open=False): | |
| temperature_slider = gr.Slider( | |
| minimum=0.0, maximum=1.0, value=0.7, step=0.01, | |
| label="Temperature (higher = more creative, lower = more focused)" | |
| ) | |
| max_tokens_slider = gr.Slider( | |
| minimum=256, maximum=8192, value=4096, step=256, | |
| label="Max Tokens (maximum length of response)" | |
| ) | |
| top_p_slider = gr.Slider( | |
| minimum=0.0, maximum=1.0, value=0.95, step=0.01, | |
| label="Top P (nucleus sampling probability threshold)" | |
| ) | |
| chatbot = gr.Chatbot(label="Conversation", height=500) | |
| with gr.Row(): | |
| message_input = gr.Textbox( | |
| label="Your Message", | |
| placeholder="Type your message here...", | |
| lines=3 | |
| ) | |
| with gr.Row(): | |
| submit_button = gr.Button("Send", variant="primary") | |
| clear_button = gr.Button("Clear Conversation") | |
| # Analytics Dashboard Tab | |
| with gr.Tab("Analytics Dashboard"): | |
| with gr.Column(): | |
| gr.Markdown("# Usage Analytics Dashboard") | |
| refresh_analytics_button = gr.Button("Refresh Analytics") | |
| analytics_summary = gr.Markdown() | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_usage_chart = gr.HTML(label="Token Usage by Model") | |
| with gr.Column(): | |
| daily_usage_chart = gr.HTML(label="Daily Token Usage") | |
| response_time_chart = gr.HTML(label="Response Time by Model") | |
| with gr.Accordion("Raw Data", open=False): | |
| analytics_table = gr.DataFrame(label="Raw Analytics Data") | |
| # Connect components with functions | |
| submit_button.click( | |
| fn=enhanced_chat_with_groq, | |
| inputs=[ | |
| api_key_input, | |
| model_dropdown, | |
| message_input, | |
| temperature_slider, | |
| max_tokens_slider, | |
| top_p_slider, | |
| chatbot, | |
| template_dropdown | |
| ], | |
| outputs=chatbot | |
| ).then( | |
| fn=lambda: "", | |
| inputs=None, | |
| outputs=message_input | |
| ) | |
| message_input.submit( | |
| fn=enhanced_chat_with_groq, | |
| inputs=[ | |
| api_key_input, | |
| model_dropdown, | |
| message_input, | |
| temperature_slider, | |
| max_tokens_slider, | |
| top_p_slider, | |
| chatbot, | |
| template_dropdown | |
| ], | |
| outputs=chatbot | |
| ).then( | |
| fn=lambda: "", | |
| inputs=None, | |
| outputs=message_input | |
| ) | |
| clear_button.click( | |
| fn=clear_conversation, | |
| inputs=None, | |
| outputs=chatbot | |
| ) | |
| test_button.click( | |
| fn=test_api_connection, | |
| inputs=[api_key_input], | |
| outputs=[api_status] | |
| ) | |
| refresh_analytics_button.click( | |
| fn=generate_analytics, | |
| inputs=[], | |
| outputs=[analytics_summary, model_usage_chart, daily_usage_chart, response_time_chart, analytics_table] | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| app.launch(share=False) |