import requests from bs4 import BeautifulSoup import json import os import time import re from newspaper import Article from html import unescape from transformers import pipeline,VitsModel, AutoTokenizer import torch import soundfile as sf from bertopic import BERTopic from sentence_transformers import SentenceTransformer def clean_text(text): text = unescape(text) text = re.sub(r'\s+', ' ', text) text = re.sub(r'<.*?>', '', text) text = text.replace('\n', ' ').replace('\r', ' ') return text.strip() def search_news(company_name, num_articles=10): query = f"{company_name} news".replace(' ', '+') headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' } search_url = f"https://www.google.com/search?q={query}&tbm=nws" try: response = requests.get(search_url, headers=headers) response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') news_links = [] news_divs = soup.find_all('div', class_='SoaBEf') for div in news_divs: link_tag = div.find('a') if link_tag: href = link_tag.get('href') if href.startswith('/url?q='): url = href.split('/url?q=')[1].split('&sa=')[0] news_links.append(url) elif href.startswith('http'): news_links.append(href) return news_links except Exception as e: print(f"Error searching for news: {str(e)}") return [] def extract_article_content(url): try: article = Article(url) article.download() article.parse() if not article.text.strip(): raise ValueError("Empty article content") return { "title": clean_text(article.title), "content": clean_text(article.text), "url": url } except Exception as e: print(f"Skipping article {url} due to error: {str(e)}") return None def save_company_news(company_name, num_articles=10): news_urls = search_news(company_name) articles = [] for url in news_urls: if len(articles) >= num_articles: break article_data = extract_article_content(url) if article_data: articles.append(article_data) time.sleep(1) while len(articles) < num_articles: additional_urls = search_news(company_name, num_articles=10) for url in additional_urls: if len(articles) >= num_articles: break article_data = extract_article_content(url) if article_data: articles.append(article_data) time.sleep(1) os.makedirs("Company", exist_ok=True) file_path = os.path.join("Company", f"{company_name}.json") with open(file_path, "w", encoding="utf-8") as json_file: json.dump(articles, json_file, ensure_ascii=False, indent=4) return file_path def sentiment_analysis_model(text): text = text[:510] classifier = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment") result = classifier(text)[0] label_mapping = { "LABEL_0": "Negative", "LABEL_1": "Neutral", "LABEL_2": "Positive" } sentiment = label_mapping.get(result["label"], "Unknown") print({"sentiment": sentiment, "score": result["score"]}) return {"sentiment": sentiment} def news_summarization(ARTICLE): summarizer = pipeline("summarization", model="Falconsai/text_summarization") summary = summarizer(ARTICLE, max_length=57) return summary[0]['summary_text'] # def audio_output(text): # model = VitsModel.from_pretrained("facebook/mms-tts-hin") # tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-hin") # inputs = tokenizer(text, return_tensors="pt") # with torch.no_grad(): # output = model(**inputs).waveform # waveform = output.squeeze().cpu().numpy() # sample_rate = 16000 # sf.write("output.wav", waveform, sample_rate) def audio_output(text, output_file="output.wav"): device = "cuda" if torch.cuda.is_available() else "cpu" try: model = VitsModel.from_pretrained("facebook/mms-tts-hin").to(device) tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-hin") inputs = tokenizer(text, return_tensors="pt").to(device) with torch.no_grad(): output = model(**inputs).waveform waveform = output.squeeze().cpu().numpy() sample_rate = 16000 sf.write(output_file, waveform, sample_rate) if device == "cuda": torch.cuda.empty_cache() del model del inputs del output del waveform except Exception as e: print(f"Error generating audio: {str(e)}") def Topic_finder(text): device = "cuda" if torch.cuda.is_available() else "cpu" embedding_model = SentenceTransformer("all-MiniLM-L6-v2", device=device) topic_model = BERTopic.load("ctam8736/bertopic-20-newsgroups") topic_model.embedding_model = embedding_model embeddings = embedding_model.encode([text]) topic, _ = topic_model.transform([text], embeddings=embeddings) words = topic_model.get_topic(topic[0]) related_words = [word for word, _ in words] return related_words