Update utils.py
Browse files
utils.py
CHANGED
@@ -1,170 +1,170 @@
|
|
1 |
-
import requests
|
2 |
-
from bs4 import BeautifulSoup
|
3 |
-
import json
|
4 |
-
import os
|
5 |
-
import time
|
6 |
-
import re
|
7 |
-
from newspaper import Article
|
8 |
-
from html import unescape
|
9 |
-
from transformers import pipeline,VitsModel, AutoTokenizer
|
10 |
-
import torch
|
11 |
-
import soundfile as sf
|
12 |
-
from bertopic import BERTopic
|
13 |
-
from sentence_transformers import SentenceTransformer
|
14 |
-
|
15 |
-
def clean_text(text):
|
16 |
-
text = unescape(text)
|
17 |
-
text = re.sub(r'\s+', ' ', text)
|
18 |
-
text = re.sub(r'<.*?>', '', text)
|
19 |
-
text = text.replace('\n', ' ').replace('\r', ' ')
|
20 |
-
return text.strip()
|
21 |
-
|
22 |
-
def search_news(company_name, num_articles=
|
23 |
-
query = f"{company_name} news".replace(' ', '+')
|
24 |
-
headers = {
|
25 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
26 |
-
}
|
27 |
-
search_url = f"https://www.google.com/search?q={query}&tbm=nws"
|
28 |
-
|
29 |
-
try:
|
30 |
-
response = requests.get(search_url, headers=headers)
|
31 |
-
response.raise_for_status()
|
32 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
33 |
-
|
34 |
-
news_links = []
|
35 |
-
news_divs = soup.find_all('div', class_='SoaBEf')
|
36 |
-
|
37 |
-
for div in news_divs:
|
38 |
-
link_tag = div.find('a')
|
39 |
-
if link_tag:
|
40 |
-
href = link_tag.get('href')
|
41 |
-
if href.startswith('/url?q='):
|
42 |
-
url = href.split('/url?q=')[1].split('&sa=')[0]
|
43 |
-
news_links.append(url)
|
44 |
-
elif href.startswith('http'):
|
45 |
-
news_links.append(href)
|
46 |
-
|
47 |
-
return news_links
|
48 |
-
except Exception as e:
|
49 |
-
print(f"Error searching for news: {str(e)}")
|
50 |
-
return []
|
51 |
-
|
52 |
-
def extract_article_content(url):
|
53 |
-
try:
|
54 |
-
article = Article(url)
|
55 |
-
article.download()
|
56 |
-
article.parse()
|
57 |
-
|
58 |
-
if not article.text.strip():
|
59 |
-
raise ValueError("Empty article content")
|
60 |
-
|
61 |
-
return {
|
62 |
-
"title": clean_text(article.title),
|
63 |
-
"content": clean_text(article.text),
|
64 |
-
"url": url
|
65 |
-
}
|
66 |
-
except Exception as e:
|
67 |
-
print(f"Skipping article {url} due to error: {str(e)}")
|
68 |
-
return None
|
69 |
-
|
70 |
-
def save_company_news(company_name, num_articles=10):
|
71 |
-
news_urls = search_news(company_name)
|
72 |
-
articles = []
|
73 |
-
|
74 |
-
for url in news_urls:
|
75 |
-
if len(articles) >= num_articles:
|
76 |
-
break
|
77 |
-
|
78 |
-
article_data = extract_article_content(url)
|
79 |
-
if article_data:
|
80 |
-
articles.append(article_data)
|
81 |
-
|
82 |
-
time.sleep(1)
|
83 |
-
|
84 |
-
while len(articles) < num_articles:
|
85 |
-
additional_urls = search_news(company_name, num_articles=10)
|
86 |
-
for url in additional_urls:
|
87 |
-
if len(articles) >= num_articles:
|
88 |
-
break
|
89 |
-
article_data = extract_article_content(url)
|
90 |
-
if article_data:
|
91 |
-
articles.append(article_data)
|
92 |
-
time.sleep(1)
|
93 |
-
|
94 |
-
os.makedirs("Company", exist_ok=True)
|
95 |
-
file_path = os.path.join("Company", f"{company_name}.json")
|
96 |
-
|
97 |
-
with open(file_path, "w", encoding="utf-8") as json_file:
|
98 |
-
json.dump(articles, json_file, ensure_ascii=False, indent=4)
|
99 |
-
|
100 |
-
return file_path
|
101 |
-
|
102 |
-
def sentiment_analysis_model(text):
|
103 |
-
text = text[:510]
|
104 |
-
classifier = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
105 |
-
result = classifier(text)[0]
|
106 |
-
label_mapping = {
|
107 |
-
"LABEL_0": "Negative",
|
108 |
-
"LABEL_1": "Neutral",
|
109 |
-
"LABEL_2": "Positive"
|
110 |
-
}
|
111 |
-
sentiment = label_mapping.get(result["label"], "Unknown")
|
112 |
-
print({"sentiment": sentiment, "score": result["score"]})
|
113 |
-
return {"sentiment": sentiment}
|
114 |
-
|
115 |
-
def news_summarization(ARTICLE):
|
116 |
-
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
117 |
-
summary = summarizer(ARTICLE, max_length=57)
|
118 |
-
return summary[0]['summary_text']
|
119 |
-
|
120 |
-
# def audio_output(text):
|
121 |
-
# model = VitsModel.from_pretrained("facebook/mms-tts-hin")
|
122 |
-
# tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-hin")
|
123 |
-
# inputs = tokenizer(text, return_tensors="pt")
|
124 |
-
# with torch.no_grad():
|
125 |
-
# output = model(**inputs).waveform
|
126 |
-
# waveform = output.squeeze().cpu().numpy()
|
127 |
-
# sample_rate = 16000
|
128 |
-
# sf.write("output.wav", waveform, sample_rate)
|
129 |
-
|
130 |
-
def audio_output(text, output_file="output.wav"):
|
131 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
132 |
-
|
133 |
-
try:
|
134 |
-
model = VitsModel.from_pretrained("facebook/mms-tts-hin").to(device)
|
135 |
-
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-hin")
|
136 |
-
|
137 |
-
inputs = tokenizer(text, return_tensors="pt").to(device)
|
138 |
-
|
139 |
-
with torch.no_grad():
|
140 |
-
output = model(**inputs).waveform
|
141 |
-
waveform = output.squeeze().cpu().numpy()
|
142 |
-
|
143 |
-
sample_rate = 16000
|
144 |
-
sf.write(output_file, waveform, sample_rate)
|
145 |
-
if device == "cuda":
|
146 |
-
torch.cuda.empty_cache()
|
147 |
-
|
148 |
-
del model
|
149 |
-
del inputs
|
150 |
-
del output
|
151 |
-
del waveform
|
152 |
-
|
153 |
-
except Exception as e:
|
154 |
-
print(f"Error generating audio: {str(e)}")
|
155 |
-
|
156 |
-
def Topic_finder(text):
|
157 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
158 |
-
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", device=device)
|
159 |
-
|
160 |
-
topic_model = BERTopic.load("ctam8736/bertopic-20-newsgroups")
|
161 |
-
topic_model.embedding_model = embedding_model
|
162 |
-
embeddings = embedding_model.encode([text])
|
163 |
-
topic, _ = topic_model.transform([text], embeddings=embeddings)
|
164 |
-
words = topic_model.get_topic(topic[0])
|
165 |
-
related_words = [word for word, _ in words]
|
166 |
-
return related_words
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
import re
|
7 |
+
from newspaper import Article
|
8 |
+
from html import unescape
|
9 |
+
from transformers import pipeline,VitsModel, AutoTokenizer
|
10 |
+
import torch
|
11 |
+
import soundfile as sf
|
12 |
+
from bertopic import BERTopic
|
13 |
+
from sentence_transformers import SentenceTransformer
|
14 |
+
|
15 |
+
def clean_text(text):
|
16 |
+
text = unescape(text)
|
17 |
+
text = re.sub(r'\s+', ' ', text)
|
18 |
+
text = re.sub(r'<.*?>', '', text)
|
19 |
+
text = text.replace('\n', ' ').replace('\r', ' ')
|
20 |
+
return text.strip()
|
21 |
+
|
22 |
+
def search_news(company_name, num_articles=2):
|
23 |
+
query = f"{company_name} news".replace(' ', '+')
|
24 |
+
headers = {
|
25 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
26 |
+
}
|
27 |
+
search_url = f"https://www.google.com/search?q={query}&tbm=nws"
|
28 |
+
|
29 |
+
try:
|
30 |
+
response = requests.get(search_url, headers=headers)
|
31 |
+
response.raise_for_status()
|
32 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
33 |
+
|
34 |
+
news_links = []
|
35 |
+
news_divs = soup.find_all('div', class_='SoaBEf')
|
36 |
+
|
37 |
+
for div in news_divs:
|
38 |
+
link_tag = div.find('a')
|
39 |
+
if link_tag:
|
40 |
+
href = link_tag.get('href')
|
41 |
+
if href.startswith('/url?q='):
|
42 |
+
url = href.split('/url?q=')[1].split('&sa=')[0]
|
43 |
+
news_links.append(url)
|
44 |
+
elif href.startswith('http'):
|
45 |
+
news_links.append(href)
|
46 |
+
|
47 |
+
return news_links
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Error searching for news: {str(e)}")
|
50 |
+
return []
|
51 |
+
|
52 |
+
def extract_article_content(url):
|
53 |
+
try:
|
54 |
+
article = Article(url)
|
55 |
+
article.download()
|
56 |
+
article.parse()
|
57 |
+
|
58 |
+
if not article.text.strip():
|
59 |
+
raise ValueError("Empty article content")
|
60 |
+
|
61 |
+
return {
|
62 |
+
"title": clean_text(article.title),
|
63 |
+
"content": clean_text(article.text),
|
64 |
+
"url": url
|
65 |
+
}
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Skipping article {url} due to error: {str(e)}")
|
68 |
+
return None
|
69 |
+
|
70 |
+
def save_company_news(company_name, num_articles=10):
|
71 |
+
news_urls = search_news(company_name)
|
72 |
+
articles = []
|
73 |
+
|
74 |
+
for url in news_urls:
|
75 |
+
if len(articles) >= num_articles:
|
76 |
+
break
|
77 |
+
|
78 |
+
article_data = extract_article_content(url)
|
79 |
+
if article_data:
|
80 |
+
articles.append(article_data)
|
81 |
+
|
82 |
+
time.sleep(1)
|
83 |
+
|
84 |
+
while len(articles) < num_articles:
|
85 |
+
additional_urls = search_news(company_name, num_articles=10)
|
86 |
+
for url in additional_urls:
|
87 |
+
if len(articles) >= num_articles:
|
88 |
+
break
|
89 |
+
article_data = extract_article_content(url)
|
90 |
+
if article_data:
|
91 |
+
articles.append(article_data)
|
92 |
+
time.sleep(1)
|
93 |
+
|
94 |
+
os.makedirs("Company", exist_ok=True)
|
95 |
+
file_path = os.path.join("Company", f"{company_name}.json")
|
96 |
+
|
97 |
+
with open(file_path, "w", encoding="utf-8") as json_file:
|
98 |
+
json.dump(articles, json_file, ensure_ascii=False, indent=4)
|
99 |
+
|
100 |
+
return file_path
|
101 |
+
|
102 |
+
def sentiment_analysis_model(text):
|
103 |
+
text = text[:510]
|
104 |
+
classifier = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
105 |
+
result = classifier(text)[0]
|
106 |
+
label_mapping = {
|
107 |
+
"LABEL_0": "Negative",
|
108 |
+
"LABEL_1": "Neutral",
|
109 |
+
"LABEL_2": "Positive"
|
110 |
+
}
|
111 |
+
sentiment = label_mapping.get(result["label"], "Unknown")
|
112 |
+
print({"sentiment": sentiment, "score": result["score"]})
|
113 |
+
return {"sentiment": sentiment}
|
114 |
+
|
115 |
+
def news_summarization(ARTICLE):
|
116 |
+
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
117 |
+
summary = summarizer(ARTICLE, max_length=57)
|
118 |
+
return summary[0]['summary_text']
|
119 |
+
|
120 |
+
# def audio_output(text):
|
121 |
+
# model = VitsModel.from_pretrained("facebook/mms-tts-hin")
|
122 |
+
# tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-hin")
|
123 |
+
# inputs = tokenizer(text, return_tensors="pt")
|
124 |
+
# with torch.no_grad():
|
125 |
+
# output = model(**inputs).waveform
|
126 |
+
# waveform = output.squeeze().cpu().numpy()
|
127 |
+
# sample_rate = 16000
|
128 |
+
# sf.write("output.wav", waveform, sample_rate)
|
129 |
+
|
130 |
+
def audio_output(text, output_file="output.wav"):
|
131 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
132 |
+
|
133 |
+
try:
|
134 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-hin").to(device)
|
135 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-hin")
|
136 |
+
|
137 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
138 |
+
|
139 |
+
with torch.no_grad():
|
140 |
+
output = model(**inputs).waveform
|
141 |
+
waveform = output.squeeze().cpu().numpy()
|
142 |
+
|
143 |
+
sample_rate = 16000
|
144 |
+
sf.write(output_file, waveform, sample_rate)
|
145 |
+
if device == "cuda":
|
146 |
+
torch.cuda.empty_cache()
|
147 |
+
|
148 |
+
del model
|
149 |
+
del inputs
|
150 |
+
del output
|
151 |
+
del waveform
|
152 |
+
|
153 |
+
except Exception as e:
|
154 |
+
print(f"Error generating audio: {str(e)}")
|
155 |
+
|
156 |
+
def Topic_finder(text):
|
157 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
158 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", device=device)
|
159 |
+
|
160 |
+
topic_model = BERTopic.load("ctam8736/bertopic-20-newsgroups")
|
161 |
+
topic_model.embedding_model = embedding_model
|
162 |
+
embeddings = embedding_model.encode([text])
|
163 |
+
topic, _ = topic_model.transform([text], embeddings=embeddings)
|
164 |
+
words = topic_model.get_topic(topic[0])
|
165 |
+
related_words = [word for word, _ in words]
|
166 |
+
return related_words
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|